
Overview

Formal Language Foundations and Schema

Languages

Stefan Tittel

University of Dortmund

Seminar: Theoretical Foundations of XML Data Processing,
February 2006

Stefan Tittel Formal Language Foundations and Schema Languages

Overview

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

Overview

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

Overview

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Motivation

XML:

general-purpose markup language widely in use,

syntactic structure described by XML schema languages.

Schema languages (like DTD) define the relative positions of
pairs of corresponding tags.

What we do now:

characterize the language class generated by DTDs,

What can we do with XML languages generated by a DTD?
What can we not do?

transform (rather naively) DTDs to string grammars,

analyze the languages created by these grammars.

How can we determine if a given language is in this language
class?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Motivation

XML:

general-purpose markup language widely in use,

syntactic structure described by XML schema languages.

Schema languages (like DTD) define the relative positions of
pairs of corresponding tags.

What we do now:

characterize the language class generated by DTDs,

What can we do with XML languages generated by a DTD?
What can we not do?

transform (rather naively) DTDs to string grammars,

analyze the languages created by these grammars.

How can we determine if a given language is in this language
class?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Definition of XML Grammars

A is the set of opening tags, A is the set of closing tags, ra is a
regular expression for each tag sort a.

Definition: XML Grammars

Grammar G = (N,T ,S ,P) with:

N = Xa for all a ∈ A,

T = A ∪ A,

some S ∈ N,

P = {Xa → araa} with a ∈ A, a ∈ A, Xa ∈ N.

Constraint: No empty tags and attributes, only reduced grammars.

Note

XML grammars as defined above only cover XML languages
generated by DTDs.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Definition of XML Grammars

A is the set of opening tags, A is the set of closing tags, ra is a
regular expression for each tag sort a.

Definition: XML Grammars

Grammar G = (N,T ,S ,P) with:

N = Xa for all a ∈ A,

T = A ∪ A,

some S ∈ N,

P = {Xa → araa} with a ∈ A, a ∈ A, Xa ∈ N.

Constraint: No empty tags and attributes, only reduced grammars.

Note

XML grammars as defined above only cover XML languages
generated by DTDs.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Examples of XML Grammars and Dyck Primes

Example

{anan} is an XML language generated by X → a(X |ε)a.

Definition

The language DA (or just D) of Dyck primes over T = A ∪ A is
generated by:

X → Σa∈AXa

Xa → aX ∗a, for a ∈ A

DA is the language of properly tag-parenthesized words. DA is not
an XML language (but bDAb is).

Da (a ∈ A) is the subset of DA, where each word starts with a and
ends with a. Da is an XML language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Examples of XML Grammars and Dyck Primes

Example

{anan} is an XML language generated by X → a(X |ε)a.

Definition

The language DA (or just D) of Dyck primes over T = A ∪ A is
generated by:

X → Σa∈AXa

Xa → aX ∗a, for a ∈ A

DA is the language of properly tag-parenthesized words. DA is not
an XML language (but bDAb is).

Da (a ∈ A) is the subset of DA, where each word starts with a and
ends with a. Da is an XML language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

LG (X) and Contexts

Definition

LG (X) is the language generated by a grammar G if X has been
chosen as start symbol.

Hence LG (X) is the set of all words that can be generated from
the non-terminal symbol X in the grammar G .

Definition: Contexts in L of Word w

CL(w) is the set of pairs of words (x , y) such that xwy ∈ L.

Example: L = {abcn | n ∈ N}

CL(b) = {(a, cn) | n ∈ N}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

LG (X) and Contexts

Definition

LG (X) is the language generated by a grammar G if X has been
chosen as start symbol.

Hence LG (X) is the set of all words that can be generated from
the non-terminal symbol X in the grammar G .

Definition: Contexts in L of Word w

CL(w) is the set of pairs of words (x , y) such that xwy ∈ L.

Example: L = {abcn | n ∈ N}

CL(b) = {(a, cn) | n ∈ N}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

LG (X) and Contexts

Definition

LG (X) is the language generated by a grammar G if X has been
chosen as start symbol.

Hence LG (X) is the set of all words that can be generated from
the non-terminal symbol X in the grammar G .

Definition: Contexts in L of Word w

CL(w) is the set of pairs of words (x , y) such that xwy ∈ L.

Example: L = {abcn | n ∈ N}

CL(b) = {(a, cn) | n ∈ N}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 1/4

At first we need to introduce the following definitions.

Definition

Fa(L) := Da ∩ F (L) for each a ∈ A, where F (L) is the set of
factors of L.

Example: L = {a(bb)n(cc)na | n ≥ 1}

Fa(L) = L, Fb(L) = {bb}, Fc(L) = {cc}.

Definition

If w is a Dyck prime in Da it can be uniquely factorized as
aua1ua2 · · · uana with uai

∈ Dai
for i = 1, . . . , n. Then

a1a2 · · · an ∈ A∗ is what is called the trace of the word w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 1/4

At first we need to introduce the following definitions.

Definition

Fa(L) := Da ∩ F (L) for each a ∈ A, where F (L) is the set of
factors of L.

Example: L = {a(bb)n(cc)na | n ≥ 1}

Fa(L) = L, Fb(L) = {bb}, Fc(L) = {cc}.

Definition

If w is a Dyck prime in Da it can be uniquely factorized as
aua1ua2 · · · uana with uai

∈ Dai
for i = 1, . . . , n. Then

a1a2 · · · an ∈ A∗ is what is called the trace of the word w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 1/4

At first we need to introduce the following definitions.

Definition

Fa(L) := Da ∩ F (L) for each a ∈ A, where F (L) is the set of
factors of L.

Example: L = {a(bb)n(cc)na | n ≥ 1}

Fa(L) = L, Fb(L) = {bb}, Fc(L) = {cc}.

Definition

If w is a Dyck prime in Da it can be uniquely factorized as
aua1ua2 · · · uana with uai

∈ Dai
for i = 1, . . . , n. Then

a1a2 · · · an ∈ A∗ is what is called the trace of the word w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 2/4

Example

bd is the trace of abccbdda,
c is the trace of bccb.

Definition: Surface

Sa(L) = set of all traces of words in Fa(L).

Example: L = {a(bb)n(cc)na | n ≥ 1}

Sa(L) = {bncn | n ≥ 1}

Sb(L) = Sc(L) = {ε}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 2/4

Example

bd is the trace of abccbdda,
c is the trace of bccb.

Definition: Surface

Sa(L) = set of all traces of words in Fa(L).

Example: L = {a(bb)n(cc)na | n ≥ 1}

Sa(L) = {bncn | n ≥ 1}

Sb(L) = Sc(L) = {ε}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 2/4

Example

bd is the trace of abccbdda,
c is the trace of bccb.

Definition: Surface

Sa(L) = set of all traces of words in Fa(L).

Example: L = {a(bb)n(cc)na | n ≥ 1}

Sa(L) = {bncn | n ≥ 1}

Sb(L) = Sc(L) = {ε}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 3/4

Definition

1 ∅ (the empty set) is a regular set.

2 {ε} is a regular set.

3 Every finite set is a regular set.

4 If R and S are regular sets, then R ∪ S , RS , and R ∗ also are.

Theorem

A language L over A ∪ A is an XML language if and only if the
following three conditions hold true:

1 L ⊂ Dα for some α ∈ A,

2 CL(w) = CL(w
′) for all a ∈ A and w ,w ′ ∈ Fa(L),

3 Sa(L) is a regular set for all a ∈ A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 3/4

Definition

1 ∅ (the empty set) is a regular set.

2 {ε} is a regular set.

3 Every finite set is a regular set.

4 If R and S are regular sets, then R ∪ S , RS , and R ∗ also are.

Theorem

A language L over A ∪ A is an XML language if and only if the
following three conditions hold true:

1 L ⊂ Dα for some α ∈ A,

2 CL(w) = CL(w
′) for all a ∈ A and w ,w ′ ∈ Fa(L),

3 Sa(L) is a regular set for all a ∈ A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 4/4

Example

Non-XML grammar with start symbol S :

S → aTTa

T → aTTa | bb

L ⊂ Da and Fa(L) = L,

all w ∈ L share the same CL(w) (by construction),

Sa(L) = (a ∪ b)2 and Sb(L) = {ε}, i. e. both surfaces are
regular.

All three conditions are satisfied. ⇒ This grammar describes an
XML language. ⇒ There must be an XML grammar generating
this language:

S → a(S |T)(S |T)a

T → bb

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Conditions for a Language to Be XML 4/4

Example

Non-XML grammar with start symbol S :

S → aTTa

T → aTTa | bb

L ⊂ Da and Fa(L) = L,

all w ∈ L share the same CL(w) (by construction),

Sa(L) = (a ∪ b)2 and Sb(L) = {ε}, i. e. both surfaces are
regular.

All three conditions are satisfied. ⇒ This grammar describes an
XML language. ⇒ There must be an XML grammar generating
this language:

S → a(S |T)(S |T)a

T → bb

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

Proof by counter-example:

Consider L = D∗
{a,b}, M = D∗

{a,d}, and H = {cLc} ∪ {cMc},

{cLc} and {cMc} both are XML languages,

cabbac and caaddc are in H,

(c , ddc) is in CH(aa), so it also has to be in CH(abba),

but cabbaddc is not in H ⇒ XML languages are not closed
under union,

then (as direct consequence of De Morgan’s theorem) XML
languages are not closed under difference either.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

More Results

XML languages are closed under intersection.

For each XML language L there is exactly one reduced XML
grammar generating L if variable names and entities are
ignored.

It is decidable if an XML language L is included in or equal to
another XML language M.

It is also decidable if a regular language L ⊂ DA is an XML
language.

It is however undecidable if a context-free language is an XML
language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

More Results

XML languages are closed under intersection.

For each XML language L there is exactly one reduced XML
grammar generating L if variable names and entities are
ignored.

It is decidable if an XML language L is included in or equal to
another XML language M.

It is also decidable if a regular language L ⊂ DA is an XML
language.

It is however undecidable if a context-free language is an XML
language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

More Results

XML languages are closed under intersection.

For each XML language L there is exactly one reduced XML
grammar generating L if variable names and entities are
ignored.

It is decidable if an XML language L is included in or equal to
another XML language M.

It is also decidable if a regular language L ⊂ DA is an XML
language.

It is however undecidable if a context-free language is an XML
language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

More Results

XML languages are closed under intersection.

For each XML language L there is exactly one reduced XML
grammar generating L if variable names and entities are
ignored.

It is decidable if an XML language L is included in or equal to
another XML language M.

It is also decidable if a regular language L ⊂ DA is an XML
language.

It is however undecidable if a context-free language is an XML
language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Characterization

More Results

XML languages are closed under intersection.

For each XML language L there is exactly one reduced XML
grammar generating L if variable names and entities are
ignored.

It is decidable if an XML language L is included in or equal to
another XML language M.

It is also decidable if a regular language L ⊂ DA is an XML
language.

It is however undecidable if a context-free language is an XML
language.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model
groups) on the right-hand side of productions have to be
one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML:

For compatibility [with SGML], it is an error if the
content model allows an element to match more than
one occurrence of an element type in the content model.

Furthermore one-unambiguity helps to efficiently parse a document.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model
groups) on the right-hand side of productions have to be
one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML:

For compatibility [with SGML], it is an error if the
content model allows an element to match more than
one occurrence of an element type in the content model.

Furthermore one-unambiguity helps to efficiently parse a document.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model
groups) on the right-hand side of productions have to be
one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML:

For compatibility [with SGML], it is an error if the
content model allows an element to match more than
one occurrence of an element type in the content model.

Furthermore one-unambiguity helps to efficiently parse a document.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model
groups) on the right-hand side of productions have to be
one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML:

For compatibility [with SGML], it is an error if the
content model allows an element to match more than
one occurrence of an element type in the content model.

Furthermore one-unambiguity helps to efficiently parse a document.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Description of (One-)Unambiguous Regular Expressions

Informal Description

If we can determine uniquely which symbol of a regular
expression corresponds to a symbol in the input word (while
knowing the whole word), the regular expression is
unambiguous.

If we can do so without looking beyond that symbol, the
regular expression is one-unambiguous.

Example

(bc) + (bd) is unambiguous, but not one-unambiguous,

b(c + d) is one-unambiguous (hence also unambiguous).

A more formal way to distinguish between symbols is needed ⇒
marking (soon).

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Description of (One-)Unambiguous Regular Expressions

Informal Description

If we can determine uniquely which symbol of a regular
expression corresponds to a symbol in the input word (while
knowing the whole word), the regular expression is
unambiguous.

If we can do so without looking beyond that symbol, the
regular expression is one-unambiguous.

Example

(bc) + (bd) is unambiguous, but not one-unambiguous,

b(c + d) is one-unambiguous (hence also unambiguous).

A more formal way to distinguish between symbols is needed ⇒
marking (soon).

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Description of (One-)Unambiguous Regular Expressions

Informal Description

If we can determine uniquely which symbol of a regular
expression corresponds to a symbol in the input word (while
knowing the whole word), the regular expression is
unambiguous.

If we can do so without looking beyond that symbol, the
regular expression is one-unambiguous.

Example

(bc) + (bd) is unambiguous, but not one-unambiguous,

b(c + d) is one-unambiguous (hence also unambiguous).

A more formal way to distinguish between symbols is needed ⇒
marking (soon).

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Description of (One-)Unambiguous Regular Expressions

Informal Description

If we can determine uniquely which symbol of a regular
expression corresponds to a symbol in the input word (while
knowing the whole word), the regular expression is
unambiguous.

If we can do so without looking beyond that symbol, the
regular expression is one-unambiguous.

Example

(bc) + (bd) is unambiguous, but not one-unambiguous,

b(c + d) is one-unambiguous (hence also unambiguous).

A more formal way to distinguish between symbols is needed ⇒
marking (soon).

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

A New Perspective on the First Section

How is one-unambiguity incorporated into the XML grammars and
languages of the previous section?

It is not. Thus the XML languages of the previous section are not
even proper DTD languages.

Example: an XML language lacking one-unambiguity

N = {Xa,Xb}
T = {a, a, b, b}
S = Xa

P = {Xa → aX ∗
b X ∗

b a,

Xb → b something b}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

A New Perspective on the First Section

How is one-unambiguity incorporated into the XML grammars and
languages of the previous section?

It is not. Thus the XML languages of the previous section are not
even proper DTD languages.

Example: an XML language lacking one-unambiguity

N = {Xa,Xb}
T = {a, a, b, b}
S = Xa

P = {Xa → aX ∗
b X ∗

b a,

Xb → b something b}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Marking of Regular Expressions

Example: (a + b)∗a(ab)∗

(a1 + b1)
∗a2(a3b2)

∗ is a marking,

(a4 + b2)
∗a1(a5b1)

∗ is a marking,

(a1 + b2)
∗a3(a1b1)

∗ is not a marking.

Definition

Assigning subscripts to occurrences of symbols,

subscript is unique for each sort of symbols,

marking of a regular expression E over alphabet Σ denoted by
E ′ over the alphabet Π,

dropping of subscripts denoted by \, i. e. (E ′)\ = E and
(w ′)\ = w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Marking of Regular Expressions

Example: (a + b)∗a(ab)∗

(a1 + b1)
∗a2(a3b2)

∗ is a marking,

(a4 + b2)
∗a1(a5b1)

∗ is a marking,

(a1 + b2)
∗a3(a1b1)

∗ is not a marking.

Definition

Assigning subscripts to occurrences of symbols,

subscript is unique for each sort of symbols,

marking of a regular expression E over alphabet Σ denoted by
E ′ over the alphabet Π,

dropping of subscripts denoted by \, i. e. (E ′)\ = E and
(w ′)\ = w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Marking of Regular Expressions

Example: (a + b)∗a(ab)∗

(a1 + b1)
∗a2(a3b2)

∗ is a marking,

(a4 + b2)
∗a1(a5b1)

∗ is a marking,

(a1 + b2)
∗a3(a1b1)

∗ is not a marking.

Definition

Assigning subscripts to occurrences of symbols,

subscript is unique for each sort of symbols,

marking of a regular expression E over alphabet Σ denoted by
E ′ over the alphabet Π,

dropping of subscripts denoted by \, i. e. (E ′)\ = E and
(w ′)\ = w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Marking of Regular Expressions

Example: (a + b)∗a(ab)∗

(a1 + b1)
∗a2(a3b2)

∗ is a marking,

(a4 + b2)
∗a1(a5b1)

∗ is a marking,

(a1 + b2)
∗a3(a1b1)

∗ is not a marking.

Definition

Assigning subscripts to occurrences of symbols,

subscript is unique for each sort of symbols,

marking of a regular expression E over alphabet Σ denoted by
E ′ over the alphabet Π,

dropping of subscripts denoted by \, i. e. (E ′)\ = E and
(w ′)\ = w .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Definition of One-Unambiguous Regular Languages

Definition

Let t, u, v ,w be words over Π and x , y ∈ Π. A regular expr. E is
one-unambiguous iff

uxv , uyw ∈ L(E ′) ∧ x 6= y ⇒ x \ 6= y \.

If ∃ one-unambiguous E for L ⇒ L is one-unambiguous.

Examples

E = (bc) + (bd), E ′ = (b1c1) + (b2d1), b1c1 ∈ L(E ′),
b2d1 ∈ L(E ′): b1 6= b2, but b = b therefore E is not
one-unambiguous.

F = b(c + d), F ′ = b1(c1 + d1) satisfies the conditions
⇒ F is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Definition of One-Unambiguous Regular Languages

Definition

Let t, u, v ,w be words over Π and x , y ∈ Π. A regular expr. E is
one-unambiguous iff

uxv , uyw ∈ L(E ′) ∧ x 6= y ⇒ x \ 6= y \.

If ∃ one-unambiguous E for L ⇒ L is one-unambiguous.

Examples

E = (bc) + (bd), E ′ = (b1c1) + (b2d1), b1c1 ∈ L(E ′),
b2d1 ∈ L(E ′): b1 6= b2, but b = b therefore E is not
one-unambiguous.

F = b(c + d), F ′ = b1(c1 + d1) satisfies the conditions
⇒ F is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Definition of One-Unambiguous Regular Languages

Definition

Let t, u, v ,w be words over Π and x , y ∈ Π. A regular expr. E is
one-unambiguous iff

uxv , uyw ∈ L(E ′) ∧ x 6= y ⇒ x \ 6= y \.

If ∃ one-unambiguous E for L ⇒ L is one-unambiguous.

Examples

E = (bc) + (bd), E ′ = (b1c1) + (b2d1), b1c1 ∈ L(E ′),
b2d1 ∈ L(E ′): b1 6= b2, but b = b therefore E is not
one-unambiguous.

F = b(c + d), F ′ = b1(c1 + d1) satisfies the conditions
⇒ F is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Definition of first, last and follow

Definition

Let L be a language.

first(L) := {b | there is a word w such that bw ∈ L}
last(L) := {b | there is a word w such that wb ∈ L}
follow(L, a) := {b | there are words v and w such that

vabw ∈ L}, for each symbol a

For a regular expression E we define set(E) as set(L(E)).

Example: E = b(c + d)

first(E) = {b}, last(E) = follow(E , b) = {c , d},
follow(E , c) = follow(E , d) = ∅

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Definition of first, last and follow

Definition

Let L be a language.

first(L) := {b | there is a word w such that bw ∈ L}
last(L) := {b | there is a word w such that wb ∈ L}
follow(L, a) := {b | there are words v and w such that

vabw ∈ L}, for each symbol a

For a regular expression E we define set(E) as set(L(E)).

Example: E = b(c + d)

first(E) = {b}, last(E) = follow(E , b) = {c , d},
follow(E , c) = follow(E , d) = ∅

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

An Alternative Definition of One-Unambiguity

Theorem

A regular expression E is one-unambiguous iff

1 ∀x , y ∈ first(E ′) : x 6= y ⇒ x \ 6= y \,

2 ∀z ∈ sym(E ′) ∧ x , y ∈ follow(E ′, z) : x 6= y ⇒ x \ 6= y \,

where sym(E ′) is the set of symbols occurring in E ′.

Example: E = b(c + d) marked as b1(c1 + d1)

first(E ′) = {b1} (condition 1 is satisfied),

follow(E , c1) = follow(E , d1) = ∅, follow(E , b) = {c1, d1};
c1 6= d1 ⇒ c 6= d (condition 2 is satisfied).

E is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

An Alternative Definition of One-Unambiguity

Theorem

A regular expression E is one-unambiguous iff

1 ∀x , y ∈ first(E ′) : x 6= y ⇒ x \ 6= y \,

2 ∀z ∈ sym(E ′) ∧ x , y ∈ follow(E ′, z) : x 6= y ⇒ x \ 6= y \,

where sym(E ′) is the set of symbols occurring in E ′.

Example: E = b(c + d) marked as b1(c1 + d1)

first(E ′) = {b1} (condition 1 is satisfied),

follow(E , c1) = follow(E , d1) = ∅, follow(E , b) = {c1, d1};
c1 6= d1 ⇒ c 6= d (condition 2 is satisfied).

E is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

An Alternative Definition of One-Unambiguity

Theorem

A regular expression E is one-unambiguous iff

1 ∀x , y ∈ first(E ′) : x 6= y ⇒ x \ 6= y \,

2 ∀z ∈ sym(E ′) ∧ x , y ∈ follow(E ′, z) : x 6= y ⇒ x \ 6= y \,

where sym(E ′) is the set of symbols occurring in E ′.

Example: E = b(c + d) marked as b1(c1 + d1)

first(E ′) = {b1} (condition 1 is satisfied),

follow(E , c1) = follow(E , d1) = ∅, follow(E , b) = {c1, d1};
c1 6= d1 ⇒ c 6= d (condition 2 is satisfied).

E is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 1/4

Definition

Let E be a regular expression. The corresponding Glushkov
automaton GE = (QE ,Σ, δE , qI ,FE) is defined by:

1 QE := all symbols of E ′ and a new, initial state qI ,

2 for a ∈ Σ: δE (qI , a) := {x | x ∈ first(E ′), x \ = a},

3 for x ∈ sym(E ′) and a ∈ Σ:
δE (x , a) = {y | y ∈ follow(E ′, x), y \ = a},

4 FE =

{

last(E ′) ∪ {qI}, if ε ∈ L(E)
last(E ′), otherwise.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 1/4

Definition

Let E be a regular expression. The corresponding Glushkov
automaton GE = (QE ,Σ, δE , qI ,FE) is defined by:

1 QE := all symbols of E ′ and a new, initial state qI ,

2 for a ∈ Σ: δE (qI , a) := {x | x ∈ first(E ′), x \ = a},

3 for x ∈ sym(E ′) and a ∈ Σ:
δE (x , a) = {y | y ∈ follow(E ′, x), y \ = a},

4 FE =

{

last(E ′) ∪ {qI}, if ε ∈ L(E)
last(E ′), otherwise.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 1/4

Definition

Let E be a regular expression. The corresponding Glushkov
automaton GE = (QE ,Σ, δE , qI ,FE) is defined by:

1 QE := all symbols of E ′ and a new, initial state qI ,

2 for a ∈ Σ: δE (qI , a) := {x | x ∈ first(E ′), x \ = a},

3 for x ∈ sym(E ′) and a ∈ Σ:
δE (x , a) = {y | y ∈ follow(E ′, x), y \ = a},

4 FE =

{

last(E ′) ∪ {qI}, if ε ∈ L(E)
last(E ′), otherwise.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 1/4

Definition

Let E be a regular expression. The corresponding Glushkov
automaton GE = (QE ,Σ, δE , qI ,FE) is defined by:

1 QE := all symbols of E ′ and a new, initial state qI ,

2 for a ∈ Σ: δE (qI , a) := {x | x ∈ first(E ′), x \ = a},

3 for x ∈ sym(E ′) and a ∈ Σ:
δE (x , a) = {y | y ∈ follow(E ′, x), y \ = a},

4 FE =

{

last(E ′) ∪ {qI}, if ε ∈ L(E)
last(E ′), otherwise.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 2/4

Example: (a + b)∗a + ε marked as (a1 + b1)
∗a2 + ε

qI a2

a1

b1

a

a

b

a

a

b
a

a

b

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 3/4

Example: a∗ba∗ marked as a∗1b1a
∗
2

qI a1

b1 a2

a

b
b

a

a

a

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 4/4

No transition leads back to the initial state.

Two transitions that lead to the same state have identical
labels.

GE can be computed in time quadratic in the size of E .

Theorem

A regular expression E is one-unambiguous iff GE is a DFA.

With Glushkov automata we can decide rather efficiently if a
regular expression is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 4/4

No transition leads back to the initial state.

Two transitions that lead to the same state have identical
labels.

GE can be computed in time quadratic in the size of E .

Theorem

A regular expression E is one-unambiguous iff GE is a DFA.

With Glushkov automata we can decide rather efficiently if a
regular expression is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Glushkov Automata 4/4

No transition leads back to the initial state.

Two transitions that lead to the same state have identical
labels.

GE can be computed in time quadratic in the size of E .

Theorem

A regular expression E is one-unambiguous iff GE is a DFA.

With Glushkov automata we can decide rather efficiently if a
regular expression is one-unambiguous.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) . . .

. . . that for each regular language L the corresponding
minimum-state DFA MS(L) is uniquely determined.

. . . how minimizing a DFA can be achieved by
equivalence-class construction.

. . . that we can transform an NFA to an equivalent DFA using
subset construction.

. . . how to transform a regular expression to a Glushkov
automaton.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) . . .

. . . that for each regular language L the corresponding
minimum-state DFA MS(L) is uniquely determined.

. . . how minimizing a DFA can be achieved by
equivalence-class construction.

. . . that we can transform an NFA to an equivalent DFA using
subset construction.

. . . how to transform a regular expression to a Glushkov
automaton.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) . . .

. . . that for each regular language L the corresponding
minimum-state DFA MS(L) is uniquely determined.

. . . how minimizing a DFA can be achieved by
equivalence-class construction.

. . . that we can transform an NFA to an equivalent DFA using
subset construction.

. . . how to transform a regular expression to a Glushkov
automaton.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) . . .

. . . that for each regular language L the corresponding
minimum-state DFA MS(L) is uniquely determined.

. . . how minimizing a DFA can be achieved by
equivalence-class construction.

. . . that we can transform an NFA to an equivalent DFA using
subset construction.

. . . how to transform a regular expression to a Glushkov
automaton.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 2/2

Idea: Examine the structural properties of MS(L) that
characterize an one-unambiguous language L.

If E is a regular expression, MS(L(E)) can be achieved by
minimizing GE .

If E is one-unambiguous, we do not need to use subset
construction on GE , because GE already is a DFA.

Question: What properties of Glushkov automata are
preserved under minimization, but not necessarily under
subset construction?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 2/2

Idea: Examine the structural properties of MS(L) that
characterize an one-unambiguous language L.

If E is a regular expression, MS(L(E)) can be achieved by
minimizing GE .

If E is one-unambiguous, we do not need to use subset
construction on GE , because GE already is a DFA.

Question: What properties of Glushkov automata are
preserved under minimization, but not necessarily under
subset construction?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 2/2

Idea: Examine the structural properties of MS(L) that
characterize an one-unambiguous language L.

If E is a regular expression, MS(L(E)) can be achieved by
minimizing GE .

If E is one-unambiguous, we do not need to use subset
construction on GE , because GE already is a DFA.

Question: What properties of Glushkov automata are
preserved under minimization, but not necessarily under
subset construction?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Initial Considerations 2/2

Idea: Examine the structural properties of MS(L) that
characterize an one-unambiguous language L.

If E is a regular expression, MS(L(E)) can be achieved by
minimizing GE .

If E is one-unambiguous, we do not need to use subset
construction on GE , because GE already is a DFA.

Question: What properties of Glushkov automata are
preserved under minimization, but not necessarily under
subset construction?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbits

Definition: Orbit

For q being a state of an NFA, O(q) is the strongly connected
component of q.

Example

q1 q2

q3 q4

O(q1) = {q1} O(q2) = {q2, q3, q4}
O(q3) = {q2, q3, q4} O(q4) = {q2, q3, q4}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Gates

Definition

If q ∈ F or ∃q′ /∈ O(q) : ((q, a), q′) ∈ δ, then q is a gate of O(q).

Example

q1 q2

q3 q4

q1 and q2 are not gates of their orbits.

q3 and q4 are gates of their orbits.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Property

Definition

An NFA has the orbit property if all gates of each orbit have
identical connections to the outside world.

Example

q1 q2

q3 q4

a

b
b

a
a

a

q1 q2

q3 q4

a

b
b

a
c

d
has orbit property doesn’t have it

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

1 For a state q, restrict state set to O(q),

2 set q as the initial state,

3 set the gates of O(q) as the final states,

4 denote the resulting automaton as Mq.

Definition

The language of Mq is called the orbit language of q.

The languages L(Mq), q ∈ QM are called the orbit languages
of M.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

1 For a state q, restrict state set to O(q),

2 set q as the initial state,

3 set the gates of O(q) as the final states,

4 denote the resulting automaton as Mq.

Definition

The language of Mq is called the orbit language of q.

The languages L(Mq), q ∈ QM are called the orbit languages
of M.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

1 For a state q, restrict state set to O(q),

2 set q as the initial state,

3 set the gates of O(q) as the final states,

4 denote the resulting automaton as Mq.

Definition

The language of Mq is called the orbit language of q.

The languages L(Mq), q ∈ QM are called the orbit languages
of M.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

1 For a state q, restrict state set to O(q),

2 set q as the initial state,

3 set the gates of O(q) as the final states,

4 denote the resulting automaton as Mq.

Definition

The language of Mq is called the orbit language of q.

The languages L(Mq), q ∈ QM are called the orbit languages
of M.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

1 For a state q, restrict state set to O(q),

2 set q as the initial state,

3 set the gates of O(q) as the final states,

4 denote the resulting automaton as Mq.

Definition

The language of Mq is called the orbit language of q.

The languages L(Mq), q ∈ QM are called the orbit languages
of M.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Orbit Automata and Orbit Languages 2/2

Example

q1 q2

q3 q4

M

q1 q4

q2

Mq1

q1 q4

q2

Mq2

q3 Mq3

q4 q1

q2

Mq4

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Characterization of One-Unambiguous Regular Languages

Theorem

M is a minimal DFA. If and only if

M has the orbit property,

all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable
from the one-unambiguous regular expressions for the orbit
languages.

Definition

O(q) is trivial if O(q) = {q} and (q, q) /∈ δ.

Question: How can we decide if an orbit language is
one-unambiguous if the orbit is not trivial?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Characterization of One-Unambiguous Regular Languages

Theorem

M is a minimal DFA. If and only if

M has the orbit property,

all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable
from the one-unambiguous regular expressions for the orbit
languages.

Definition

O(q) is trivial if O(q) = {q} and (q, q) /∈ δ.

Question: How can we decide if an orbit language is
one-unambiguous if the orbit is not trivial?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Characterization of One-Unambiguous Regular Languages

Theorem

M is a minimal DFA. If and only if

M has the orbit property,

all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable
from the one-unambiguous regular expressions for the orbit
languages.

Definition

O(q) is trivial if O(q) = {q} and (q, q) /∈ δ.

Question: How can we decide if an orbit language is
one-unambiguous if the orbit is not trivial?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Characterization of One-Unambiguous Regular Languages

Theorem

M is a minimal DFA. If and only if

M has the orbit property,

all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable
from the one-unambiguous regular expressions for the orbit
languages.

Definition

O(q) is trivial if O(q) = {q} and (q, q) /∈ δ.

Question: How can we decide if an orbit language is
one-unambiguous if the orbit is not trivial?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

M-Consistency

Definition

M is a DFA,

s ∈ ΣM is M-consistent if
∃ f (s) ∈ QM : ∀q ∈ FM : ((q, s), f (s)) ∈ δM ,

S ⊆ ΣM is M-consistent if ∀s ∈ S : s is M-consistent.

Example

a a
bM1

a b
b M2

a is M1-consistent a is not M2-consistent

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

S-Cut

Definition: S-Cut MS of M

∀a ∈ S : ∀q ∈ QM : ∀q′ ∈ FM : remove ((q, a), q′) from δM

Example

b

a
c ca b c c

M {a, b}-cut of M

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Conditions for a DFA to Be One-Unambiguous 1/2

Theorem

Let

M be a minimal DFA,

S be an M-consistent set of symbols,

now iff

MS satisfies the orbit property,

all orbit languages of MS are one-unambiguous,

then L(M) is one-unambiguous.

We will extend this theorem to a decision algorithm very soon.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Conditions for a DFA to Be One-Unambiguous 2/2

Example

b

a
c ca b c c

M {a, b}-cut of M

The {a, b}-cut of M has only one-unambiguous orbits. Hence
L(M) is one-unambiguous and can be denoted by the
one-unambiguous regular expression c(a + b(ε + cc))∗.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Decision Algorithm

boolean one-unambiguous (MinimalDFA M) {
compute S := {a ∈ Σ | a is M-consistent};
if (M has a single, trivial orbit) {return true;}
if (M has a single, nontrivial orbit && S = ∅) {return false;}
compute the orbits of MS ;
if (!OrbitProperty(MS)) {return false;}
for (each orbit K of MS) {

choose x ∈ K ;
if (!one-unambiguous((MS)x) {return false;}

}
return true;

}

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Closure

Definition

L is a language,

w is a word,

{v | wv ∈ L} is the derivative of L with respect to w and
denoted by w\L.

The family of one-unambiguous regular languages is closed
under derivatives.

One-unambiguous regular expressions are not closed under
derivatives, unless they are in a star normal form.

The family of one-unambigous regular languages is not closed
under union, concatenation or star.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Closure

Definition

L is a language,

w is a word,

{v | wv ∈ L} is the derivative of L with respect to w and
denoted by w\L.

The family of one-unambiguous regular languages is closed
under derivatives.

One-unambiguous regular expressions are not closed under
derivatives, unless they are in a star normal form.

The family of one-unambigous regular languages is not closed
under union, concatenation or star.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Closure

Definition

L is a language,

w is a word,

{v | wv ∈ L} is the derivative of L with respect to w and
denoted by w\L.

The family of one-unambiguous regular languages is closed
under derivatives.

One-unambiguous regular expressions are not closed under
derivatives, unless they are in a star normal form.

The family of one-unambigous regular languages is not closed
under union, concatenation or star.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Recognition
Closure

Closure

Definition

L is a language,

w is a word,

{v | wv ∈ L} is the derivative of L with respect to w and
denoted by w\L.

The family of one-unambiguous regular languages is closed
under derivatives.

One-unambiguous regular expressions are not closed under
derivatives, unless they are in a star normal form.

The family of one-unambigous regular languages is not closed
under union, concatenation or star.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

XML Schema Languages 1/2

Definition

An XML schema describes constraints on the structure and
content beyond the basic syntax constraints of XML itself.

It is specified by an XML schema language.

Examples of XML schema languages

DTD, XML Schema, RELAX (NG), DSD, XDuce

Attention

“XML schema” 6= “XML Schema”

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

XML Schema Languages 1/2

Definition

An XML schema describes constraints on the structure and
content beyond the basic syntax constraints of XML itself.

It is specified by an XML schema language.

Examples of XML schema languages

DTD, XML Schema, RELAX (NG), DSD, XDuce

Attention

“XML schema” 6= “XML Schema”

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

XML Schema Languages 1/2

Definition

An XML schema describes constraints on the structure and
content beyond the basic syntax constraints of XML itself.

It is specified by an XML schema language.

Examples of XML schema languages

DTD, XML Schema, RELAX (NG), DSD, XDuce

Attention

“XML schema” 6= “XML Schema”

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

XML Schema Languages 2/2

Example: XML Schema Specification of a Business Card (Extract)

<schema [...]

<element name="card" type="b:card_type"/>

<element name="name" type="string"/>

<element name="logo" type="b:logo_type"/>

<complexType name="card_type">

<sequence>

<element ref="b:name"/>

<element ref="b:logo" minOccurs="0"/>

</sequence>

</complexType>

<complexType name="logo_type">

<attribute name="url" type="anyURI"/>

. . .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Motivation

We are interested in . . .

1 . . . expression power.

2 . . . closure properties.

3 . . . document validation.

Examples

1 Can I model my constraints with a certain XML schema
language?

2 What XHTML 1.0 documents are still valid XHTML 1.1
documents?

3 Can I efficiently check if a document conforms to an XML
schema?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Motivation

We are interested in . . .

1 . . . expression power.

2 . . . closure properties.

3 . . . document validation.

Examples

1 Can I model my constraints with a certain XML schema
language?

2 What XHTML 1.0 documents are still valid XHTML 1.1
documents?

3 Can I efficiently check if a document conforms to an XML
schema?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Motivation

We are interested in . . .

1 . . . expression power.

2 . . . closure properties.

3 . . . document validation.

Examples

1 Can I model my constraints with a certain XML schema
language?

2 What XHTML 1.0 documents are still valid XHTML 1.1
documents?

3 Can I efficiently check if a document conforms to an XML
schema?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Motivation

We are interested in . . .

1 . . . expression power.

2 . . . closure properties.

3 . . . document validation.

Examples

1 Can I model my constraints with a certain XML schema
language?

2 What XHTML 1.0 documents are still valid XHTML 1.1
documents?

3 Can I efficiently check if a document conforms to an XML
schema?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Motivation

We are interested in . . .

1 . . . expression power.

2 . . . closure properties.

3 . . . document validation.

Examples

1 Can I model my constraints with a certain XML schema
language?

2 What XHTML 1.0 documents are still valid XHTML 1.1
documents?

3 Can I efficiently check if a document conforms to an XML
schema?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Motivation

We are interested in . . .

1 . . . expression power.

2 . . . closure properties.

3 . . . document validation.

Examples

1 Can I model my constraints with a certain XML schema
language?

2 What XHTML 1.0 documents are still valid XHTML 1.1
documents?

3 Can I efficiently check if a document conforms to an XML
schema?

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Regular Tree Grammars 1/3

Definition

A model group is a regular expression in which the following
additional operators are allowed:

? – where E? denotes L(E + ε)

& – where F&G denotes L(FG + GF)
+ – where E+ denotes L(EE ∗)

Definition: Regular Tree Grammar G = (N,T ,P ,S)

N = non-terminal symbols,

T = terminal symbols,

P = productions of the form X → a Expression with X ∈ N,
a ∈ T and Expression model group over N,

S = start symbols.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Regular Tree Grammars 1/3

Definition

A model group is a regular expression in which the following
additional operators are allowed:

? – where E? denotes L(E + ε)

& – where F&G denotes L(FG + GF)
+ – where E+ denotes L(EE ∗)

Definition: Regular Tree Grammar G = (N,T ,P ,S)

N = non-terminal symbols,

T = terminal symbols,

P = productions of the form X → a Expression with X ∈ N,
a ∈ T and Expression model group over N,

S = start symbols.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Regular Tree Grammars 2/3

Example: A Tree Grammar for a DTD

<!DOCTYPE book [

<!ELEMENT book (author+, publisher) >

<!ELEMENT author (#PCDATA) >

<!ELEMENT publisher (EMPTY) >

<!ATTLIST publisher Name CDATA #IMPLIED >

]>

N = {Book ,Author ,Publisher ,Pcdata},
T = {book , author , publisher , pcdata},
S = {Book},
P = {Book → book(Author+,Publisher),

Author → author(Pcdata),
Publisher → publisher(ε),
Pcdata → pcdata(ε)}.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Regular Tree Grammars 3/3

Example

A possible document complying with this DTD:

<book>

<author>J. E. Hopcroft</author>

<author>J. D. Ullman</author>

<publisher Name="Addison-Wesley"/>

</book>

An instance tree for this document:

b1

a1

pcdata

a2

pcdata

p1

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1,N2,T ,P1,P2,S) with

T and S as usual,

N1 = non-terminal symbols used for deriving trees,

N2 = non-terminal symbols used for content-model spec.,

P1 = productions of the form A → aX with A ∈ N1,X ∈ N2,
a ∈ T (only one production per symbol ∈ N1),

P2 = prod. of the form X → Exp with X ∈ N2, Exp model
group over N1 (only one production per symbol ∈ N2).

Definition

contentModel(A) (A ∈ N1) is the model group over N1 denoting
the content of A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1,N2,T ,P1,P2,S) with

T and S as usual,

N1 = non-terminal symbols used for deriving trees,

N2 = non-terminal symbols used for content-model spec.,

P1 = productions of the form A → aX with A ∈ N1,X ∈ N2,
a ∈ T (only one production per symbol ∈ N1),

P2 = prod. of the form X → Exp with X ∈ N2, Exp model
group over N1 (only one production per symbol ∈ N2).

Definition

contentModel(A) (A ∈ N1) is the model group over N1 denoting
the content of A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1,N2,T ,P1,P2,S) with

T and S as usual,

N1 = non-terminal symbols used for deriving trees,

N2 = non-terminal symbols used for content-model spec.,

P1 = productions of the form A → aX with A ∈ N1,X ∈ N2,
a ∈ T (only one production per symbol ∈ N1),

P2 = prod. of the form X → Exp with X ∈ N2, Exp model
group over N1 (only one production per symbol ∈ N2).

Definition

contentModel(A) (A ∈ N1) is the model group over N1 denoting
the content of A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1,N2,T ,P1,P2,S) with

T and S as usual,

N1 = non-terminal symbols used for deriving trees,

N2 = non-terminal symbols used for content-model spec.,

P1 = productions of the form A → aX with A ∈ N1,X ∈ N2,
a ∈ T (only one production per symbol ∈ N1),

P2 = prod. of the form X → Exp with X ∈ N2, Exp model
group over N1 (only one production per symbol ∈ N2).

Definition

contentModel(A) (A ∈ N1) is the model group over N1 denoting
the content of A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1,N2,T ,P1,P2,S) with

T and S as usual,

N1 = non-terminal symbols used for deriving trees,

N2 = non-terminal symbols used for content-model spec.,

P1 = productions of the form A → aX with A ∈ N1,X ∈ N2,
a ∈ T (only one production per symbol ∈ N1),

P2 = prod. of the form X → Exp with X ∈ N2, Exp model
group over N1 (only one production per symbol ∈ N2).

Definition

contentModel(A) (A ∈ N1) is the model group over N1 denoting
the content of A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1,N2,T ,P1,P2,S) with

T and S as usual,

N1 = non-terminal symbols used for deriving trees,

N2 = non-terminal symbols used for content-model spec.,

P1 = productions of the form A → aX with A ∈ N1,X ∈ N2,
a ∈ T (only one production per symbol ∈ N1),

P2 = prod. of the form X → Exp with X ∈ N2, Exp model
group over N1 (only one production per symbol ∈ N2).

Definition

contentModel(A) (A ∈ N1) is the model group over N1 denoting
the content of A.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 2/2

Example: The Grammar of the Last Example in NF1

N1 = {Book ,Author ,Publisher ,Pcdata},
N2 = {BOOK ,AUTHOR ,PUBLISHER ,PCDATA},
T = {book , author , publisher , pcdata},
P1 = {Book → book BOOK ,Author → author AUTHOR ,

Publisher → publisher PUBLISHER ,Pcdata →
pcdata PCDATA},

P2 = {BOOK → (Author+,Publisher),AUTHOR → Pcdata,
PUBLISHER → ε,PCDATA → ε},

S = {Book}.

contentModel(Book) = (Author+,Publisher)

From now on upper- and lower-casing will be used like in this
example to distinguish between symbols in N1,N2 and T .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Normal Form 1 (NF1) 2/2

Example: The Grammar of the Last Example in NF1

N1 = {Book ,Author ,Publisher ,Pcdata},
N2 = {BOOK ,AUTHOR ,PUBLISHER ,PCDATA},
T = {book , author , publisher , pcdata},
P1 = {Book → book BOOK ,Author → author AUTHOR ,

Publisher → publisher PUBLISHER ,Pcdata →
pcdata PCDATA},

P2 = {BOOK → (Author+,Publisher),AUTHOR → Pcdata,
PUBLISHER → ε,PCDATA → ε},

S = {Book}.

contentModel(Book) = (Author+,Publisher)

From now on upper- and lower-casing will be used like in this
example to distinguish between symbols in N1,N2 and T .

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Local Tree Grammars

Definition: Tree-Locality Constraint

∀a ∈ T there is no more than one rule of the form A → aX in P1.

Definition: Local Tree Grammar (LTG)

A regular tree grammar that satisfies the tree-locality constraint.

Example

N1 = {Out, In,Pcd}
N2 = {OUT , IN,PCD}
T = {out, in, pcd}
P1a = {Out → out OUT , In → in IN,Pcd → pcd PCD}
P1b = {Out → out OUT , In → out IN,Pcd → pcd PCD}
P2 = {OUT → In, IN → Pcd ,PCD → ε}

(N1,N2,T ,P1a ,P2) is an LTG, (N1,N2,T ,P1b ,P2) is not.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Local Tree Grammars

Definition: Tree-Locality Constraint

∀a ∈ T there is no more than one rule of the form A → aX in P1.

Definition: Local Tree Grammar (LTG)

A regular tree grammar that satisfies the tree-locality constraint.

Example

N1 = {Out, In,Pcd}
N2 = {OUT , IN,PCD}
T = {out, in, pcd}
P1a = {Out → out OUT , In → in IN,Pcd → pcd PCD}
P1b = {Out → out OUT , In → out IN,Pcd → pcd PCD}
P2 = {OUT → In, IN → Pcd ,PCD → ε}

(N1,N2,T ,P1a ,P2) is an LTG, (N1,N2,T ,P1b ,P2) is not.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Single-Type Constraint Languages 1/2

Definition

Two different non-terminals A and B are called competing with
each other if

one production rule has A in the left-hand side,

another production rule has B in the left-hand side, and

these two production rules share the same terminal in the
right-hand side.

Definition: Single-Type Constraint Grammar

For each production rule, non-terminals in its content model
do not compete with each other,

start symbols do not compete with each other.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Single-Type Constraint Languages 1/2

Definition

Two different non-terminals A and B are called competing with
each other if

one production rule has A in the left-hand side,

another production rule has B in the left-hand side, and

these two production rules share the same terminal in the
right-hand side.

Definition: Single-Type Constraint Grammar

For each production rule, non-terminals in its content model
do not compete with each other,

start symbols do not compete with each other.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Single-Type Constraint Languages 2/2

Definition

A tree language is a single-type constraint language if it is
generated by a single-type constraint grammar.

Example

P1 = {A → B ,A → C ,B → a,C → b} satisfies the s.-t. c.,

P2 = {A → B ,A → C ,B → a,C → a} doesn’t.

Single-type constraint languages and local tree languages are . . .

. . . closed under intersection.

. . . not closed under union.

. . . not closed under difference.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Single-Type Constraint Languages 2/2

Definition

A tree language is a single-type constraint language if it is
generated by a single-type constraint grammar.

Example

P1 = {A → B ,A → C ,B → a,C → b} satisfies the s.-t. c.,

P2 = {A → B ,A → C ,B → a,C → a} doesn’t.

Single-type constraint languages and local tree languages are . . .

. . . closed under intersection.

. . . not closed under union.

. . . not closed under difference.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Local Tree Languages ⊂ Single Type Constraint Languages

Theorem

Local tree languages form a proper subclass of single-type
constraint languages.

Proof:

=⇒: A local tree language satisfies the single-type constraint by
definition.

⇐=:

Consider a regular tree grammar with A,B ∈ N1 ∧ A 6= B ∧
root(A) = root(B).

This grammar can satisfy the single-type constraint.

This grammar is not a local tree grammar.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Local Tree Languages ⊂ Single Type Constraint Languages

Theorem

Local tree languages form a proper subclass of single-type
constraint languages.

Proof:

=⇒: A local tree language satisfies the single-type constraint by
definition.

⇐=:

Consider a regular tree grammar with A,B ∈ N1 ∧ A 6= B ∧
root(A) = root(B).

This grammar can satisfy the single-type constraint.

This grammar is not a local tree grammar.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Local Tree Languages ⊂ Single Type Constraint Languages

Theorem

Local tree languages form a proper subclass of single-type
constraint languages.

Proof:

=⇒: A local tree language satisfies the single-type constraint by
definition.

⇐=:

Consider a regular tree grammar with A,B ∈ N1 ∧ A 6= B ∧
root(A) = root(B).

This grammar can satisfy the single-type constraint.

This grammar is not a local tree grammar.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Overview

1 XML Languages and Grammars
Introduction and Basics
Characterization

2 One-Unambiguous Regular Languages
Introduction and Basics
Recognition
Closure

3 Analysis of XML Schema Languages
Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

DTD and DSD

DTD

TDLL(1),

local tree grammar.

DSD

No constraints on the production rules,

theoretically any regular tree grammar can be expressed in
DSD,

parsing algorithm uses greedy technique with one vertical and
horizontal lookahead,

acceptance of all and only TDLL(1) languages is suspected.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

DTD and DSD

DTD

TDLL(1),

local tree grammar.

DSD

No constraints on the production rules,

theoretically any regular tree grammar can be expressed in
DSD,

parsing algorithm uses greedy technique with one vertical and
horizontal lookahead,

acceptance of all and only TDLL(1) languages is suspected.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

XML Schema and RELAX

XML Schema

TDLL(1) with single-type constraint,

group definitions allowed to contain other group definitions
without restriction ⇒ context-free content models possible
(specification mistake?).

RELAX

Any regular tree grammar.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

XML Schema and RELAX

XML Schema

TDLL(1) with single-type constraint,

group definitions allowed to contain other group definitions
without restriction ⇒ context-free content models possible
(specification mistake?).

RELAX

Any regular tree grammar.

Stefan Tittel Formal Language Foundations and Schema Languages

XML Languages and Grammars
One-Unambiguous Regular Languages
Analysis of XML Schema Languages

Introduction and Basics
Language Classes
Evaluating XML Schema Languages

Expression Power

This figure is from [3].

(a)

(b)

(c)

(d)

(e) (g)(f)

(a) regular tree grammars (RELAX, XDuce)
(b) TD(1) grammars
(c) single-type constraint grammars
(d) local tree grammars
(e) TDLL(1) grammars
(f) TDLL(1) w/ single-type constraint (XML Schema, DSD?)
(g) TDLL(1) w/ tree-locality constraint (DTD)

Stefan Tittel Formal Language Foundations and Schema Languages

References

References 1/2

I Jean Berstel, Luc Boasson. Formal Properties of XML
Grammars and Languages. Acta Informatica, 38:649–671,
2002.

I Anne Brüggemann-Klein, Derick Wood. One-Unambiguous
Regular Languages. Information and Computation,
140:229–253, 1998.

[3] Dongwon Lee, Murali Mani, Makoto Murata. Reasoning about
XML Schema Languages using Formal Language Theory.
Technical Report, IBM Almaden Research Center, 2000. Log
#95071.

Stefan Tittel Formal Language Foundations and Schema Languages

References

References 2/2

I Thomas Schwentick. Formal Methods for XML: Algorithms &
Complexity. Internet:
<http://lrb.cs.uni-dortmund.de/~tick/Talks/

edbtp.pdf>, 2004 (cited 2006–01–26).

I Anders Møller, Michael I. Schwartzbach. The XML Revolution:
Technologies for the future Web. Internet:
<http://www.brics.dk/~amoeller/XML/>, 2003 (cited
2006–01–26).

I Dongwon Lee, Murali Mani, Makoto Murata. Taxonomy of
XML Schema Languages Using Formal Language Theory.
Proceedings of the 2001 Conference on Extreme Markup
Languages, 2001.

Stefan Tittel Formal Language Foundations and Schema Languages

<http://www.brics.dk/~amoeller/XML/>

	Overview
	XML Languages and Grammars
	Introduction and Basics
	Characterization

	One-Unambiguous Regular Languages
	Introduction and Basics
	Recognition
	Closure

	Analysis of XML Schema Languages
	Introduction and Basics
	Language Classes
	Evaluating XML Schema Languages

	References

