Formal Language Foundations and Schema Languages

Stefan Tittel

University of Dortmund

Seminar: Theoretical Foundations of XML Data Processing, February 2006

Overview

Overview

XML Languages and Grammars

 Introduction and Basics
 Characterization

 One-Unambiguous Regular Languate

 Introduction and Basics
 Recognition
 Closure

3 Analysis of XML Schema Languages

- Introduction and Basics
- Language Classes
- Evaluating XML Schema Languages

Overview

Overview

XML Languages and Grammars

 Introduction and Basics
 Characterization

 One-Unambiguous Regular Languages

 Introduction and Basics
 Recognition
 Closure

 Analysis of XML Schema Languages

- Introduction and Basics
- Language Classes
- Evaluating XML Schema Languages

Overview

Overview

1 XML Languages and Grammars Introduction and Basics Characterization 2 One-Unambiguous Regular Languages Introduction and Basics Recognition Closure 3 Analysis of XML Schema Languages Introduction and Basics

- Language Classes
- Evaluating XML Schema Languages

Introduction and Basics Characterization

Overview

XML Languages and Grammars

 Introduction and Basics
 Characterization

 One-Unambiguous Regular Languag

 Introduction and Basics
 Recognition
 Closure

- 3 Analysis of XML Schema Language
 - Introduction and Basics
 - Language Classes
 - Evaluating XML Schema Languages

Motivation

Introduction and Basics Characterization

XML:

- general-purpose markup language widely in use,
- syntactic structure described by XML schema languages.
 - Schema languages (like DTD) define the relative positions of pairs of corresponding tags.

What we do now:

- characterize the language class generated by DTDs,
 - What can we do with XML languages generated by a DTD?
 - What can we not do?
- transform (rather naively) DTDs to string grammars,
- analyze the languages created by these grammars.
 - How can we determine if a given language is in this language class?

Introduction and Basics Characterization

Motivation

XML:

- general-purpose markup language widely in use,
- syntactic structure described by XML schema languages.
 - Schema languages (like DTD) define the relative positions of pairs of corresponding tags.

What we do now:

- characterize the language class generated by DTDs,
 - What can we do with XML languages generated by a DTD?
 - What can we not do?
- transform (rather naively) DTDs to string grammars,
- analyze the languages created by these grammars.
 - How can we determine if a given language is in this language class?

Introduction and Basics Characterization

Definition of XML Grammars

A is the set of opening tags, \overline{A} is the set of closing tags, r_a is a regular expression for each tag sort a.

Definition: XML Grammars

Grammar G = (N, T, S, P) with:

•
$$N = X_a$$
 for all $a \in A$,

•
$$T = A \cup \overline{A}$$
,

• some
$$S \in N$$
,

•
$$P = \{X_a \to ar_a\overline{a}\}$$
 with $a \in A, \ \overline{a} \in \overline{A}, \ X_a \in N$.

Constraint: No empty tags and attributes, only reduced grammars.

Note

XML grammars as defined above only cover XML languages generated by DTDs.

Introduction and Basics Characterization

Definition of XML Grammars

A is the set of opening tags, \overline{A} is the set of closing tags, r_a is a regular expression for each tag sort a.

Definition: XML Grammars

Grammar G = (N, T, S, P) with:

•
$$N = X_a$$
 for all $a \in A$,

•
$$T = A \cup \overline{A}$$
,

• some
$$S \in N$$

•
$$P = \{X_a \to ar_a\overline{a}\}$$
 with $a \in A, \ \overline{a} \in \overline{A}, \ X_a \in N$.

Constraint: No empty tags and attributes, only reduced grammars.

Note

XML grammars as defined above only cover XML languages generated by DTDs.

Introduction and Basics Characterization

Examples of XML Grammars and Dyck Primes

Example

 $\{a^n\overline{a}^n\}$ is an XML language generated by $X \to a(X|\varepsilon)\overline{a}$.

Definition

The language D_A (or just D) of Dyck primes over $T = A \cup A$ is generated by:

$$egin{array}{rcl} X& o&\Sigma_{a\in A}X_a\ X_a& o&aX^*\overline{a}, & ext{for }a\in A \end{array}$$

 D_A is the language of properly tag-parenthesized words. D_A is not an XML language (but $bD_A\overline{b}$ is).

 D_a ($a \in A$) is the subset of D_A , where each word starts with a and ends with \overline{a} . D_a is an XML language.

Introduction and Basics Characterization

Examples of XML Grammars and Dyck Primes

Example

 $\{a^n\overline{a}^n\}$ is an XML language generated by $X \to a(X|\varepsilon)\overline{a}$.

Definition

The language D_A (or just D) of Dyck primes over $T = A \cup \overline{A}$ is generated by:

$$egin{array}{rcl} X& o&\Sigma_{a\in A}X_a\ X_a& o&aX^*\overline{a}, \end{array}$$
 for $a\in A$

 D_A is the language of properly tag-parenthesized words. D_A is not an XML language (but $bD_A\overline{b}$ is).

 D_a ($a \in A$) is the subset of D_A , where each word starts with a and ends with \overline{a} . D_a is an XML language.

Introduction and Basics Characterization

$L_G(X)$ and Contexts

Definition

 $L_G(X)$ is the language generated by a grammar G if X has been chosen as start symbol.

Hence $L_G(X)$ is the set of all words that can be generated from the non-terminal symbol X in the grammar G.

Definition: Contexts in *L* of Word *w*

 $C_L(w)$ is the set of pairs of words (x, y) such that $xwy \in L$

Example: $L = \{abc^n \mid n \in \mathbb{N}\}\$ $C_L(b) = \{(a, c^n) \mid n \in \mathbb{N}\}$

Introduction and Basics Characterization

$L_G(X)$ and Contexts

Definition

 $L_G(X)$ is the language generated by a grammar G if X has been chosen as start symbol.

Hence $L_G(X)$ is the set of all words that can be generated from the non-terminal symbol X in the grammar G.

Definition: Contexts in L of Word w

 $C_L(w)$ is the set of pairs of words (x, y) such that $xwy \in L$.

Example: $L = \{abc^n \mid n \in \mathbb{N}\}\$ $C_L(b) = \{(a, c^n) \mid n \in \mathbb{N}\}$

Introduction and Basics Characterization

$L_G(X)$ and Contexts

Definition

 $L_G(X)$ is the language generated by a grammar G if X has been chosen as start symbol.

Hence $L_G(X)$ is the set of all words that can be generated from the non-terminal symbol X in the grammar G.

Definition: Contexts in L of Word w

 $C_L(w)$ is the set of pairs of words (x, y) such that $xwy \in L$.

Example: $L = \{abc^n \mid n \in \mathbb{N}\}$

 $C_L(b) = \{(a, c^n) \mid n \in \mathbb{N}\}$

Introduction and Basics Characterization

Overview

XML Languages and Grammars

 Introduction and Basics
 Characterization

2 One-Unambiguous Regular Languages

- Introduction and Basics
- Recognition
- Closure

3 Analysis of XML Schema Languages

- Introduction and Basics
- Language Classes
- Evaluating XML Schema Languages

Introduction and Basics Characterization

Conditions for a Language to Be XML 1/4

At first we need to introduce the following definitions.

Definition

 $F_a(L) := D_a \cap F(L)$ for each $a \in A$, where F(L) is the set of factors of L.

Example:
$$L = \{a(b\overline{b})^n (c\overline{c})^n \overline{a} \mid n \ge 1\}$$

 $F_a(L) = L, \quad F_b(L) = \{b\overline{b}\}, \quad F_c(L) = \{c\overline{c}\}.$

Definition

If w is a Dyck prime in D_a it can be uniquely factorized as $au_{a_1}u_{a_2}\cdots u_{a_n}\overline{a}$ with $u_{a_i} \in D_{a_i}$ for $i = 1, \ldots, n$. Then $a_1a_2\cdots a_n \in A^*$ is what is called the trace of the word w.

Introduction and Basics Characterization

Conditions for a Language to Be XML 1/4

At first we need to introduce the following definitions.

Definition

 $F_a(L) := D_a \cap F(L)$ for each $a \in A$, where F(L) is the set of factors of L.

Example:
$$L = \{a(b\overline{b})^n (c\overline{c})^n \overline{a} \mid n \ge 1\}$$

 $F_a(L) = L, \quad F_b(L) = \{b\overline{b}\}, \quad F_c(L) = \{c\overline{c}\}.$

Definition

If w is a Dyck prime in D_a it can be uniquely factorized as $au_{a_1}u_{a_2}\cdots u_{a_n}\overline{a}$ with $u_{a_i} \in D_{a_i}$ for $i = 1, \ldots, n$. Then $a_1a_2\cdots a_n \in A^*$ is what is called the trace of the word w.

Introduction and Basics Characterization

Conditions for a Language to Be XML 1/4

At first we need to introduce the following definitions.

Definition

$$F_a(L) := D_a \cap F(L)$$
 for each $a \in A$, where $F(L)$ is the set of factors of L .

Example:
$$L = \{a(b\overline{b})^n (c\overline{c})^n \overline{a} \mid n \ge 1\}$$

 $F_a(L) = L, \quad F_b(L) = \{b\overline{b}\}, \quad F_c(L) = \{c\overline{c}\}.$

Definition

If w is a Dyck prime in D_a it can be uniquely factorized as $au_{a_1}u_{a_2}\cdots u_{a_n}\overline{a}$ with $u_{a_i}\in D_{a_i}$ for $i=1,\ldots,n$. Then $a_1a_2\cdots a_n\in A^*$ is what is called the trace of the word w.

Introduction and Basics Characterization

Conditions for a Language to Be XML 2/4

Example

bd is the trace of $abc\overline{c}\overline{b}d\overline{d}\overline{a}$, *c* is the trace of $bc\overline{c}\overline{b}$.

Definition: Surface

 $S_a(L)$ = set of all traces of words in $F_a(L)$.

Example: $L = \{a(b\overline{b})^n (c\overline{c})^n\overline{a} \mid n \ge 1\}$

•
$$S_a(L) = \{b^n c^n \mid n \ge 1\}$$

•
$$S_b(L) = S_c(L) = \{\varepsilon\}$$

Introduction and Basics Characterization

Conditions for a Language to Be XML 2/4

Example

bd is the trace of $abc\overline{c}\overline{b}d\overline{d}\overline{a}$, *c* is the trace of $bc\overline{c}\overline{b}$.

Definition: Surface

 $S_a(L)$ = set of all traces of words in $F_a(L)$.

Example: $L = \{a(bb)^n (c\overline{c})^n \overline{a} \mid n \geq 1\}$

•
$$S_a(L) = \{b^n c^n \mid n \ge 1\}$$

•
$$S_b(L) = S_c(L) = \{\varepsilon\}$$

Introduction and Basics Characterization

Conditions for a Language to Be XML 2/4

Example

bd is the trace of $abc\overline{c}\overline{b}d\overline{d}\overline{a}$, *c* is the trace of $bc\overline{c}\overline{b}$.

Definition: Surface

 $S_a(L)$ = set of all traces of words in $F_a(L)$.

Example: $L = \{a(b\overline{b})^n (c\overline{c})^n \overline{a} \mid n \ge 1\}$

•
$$S_a(L) = \{b^n c^n \mid n \ge 1\}$$

•
$$S_b(L) = S_c(L) = \{\varepsilon\}$$

Introduction and Basics Characterization

Conditions for a Language to Be XML 3/4

Definition

- (the empty set) is a regular set.
- **2** $\{\varepsilon\}$ is a regular set.
- Severy finite set is a regular set.
- **(**) If *R* and *S* are regular sets, then $R \cup S$, *RS*, and R^* also are.

Theorem

A language L over $A \cup \overline{A}$ is an XML language if and only if the following three conditions hold true:

- $L \subset D_{\alpha}$ for some $\alpha \in A$,
- 3 $C_L(w) = C_L(w')$ for all $a \in A$ and $w, w' \in F_a(L)$,
- 3 $S_a(L)$ is a regular set for all $a \in A$.

Introduction and Basics Characterization

Conditions for a Language to Be XML 3/4

Definition

- (the empty set) is a regular set.
- **2** $\{\varepsilon\}$ is a regular set.
- Severy finite set is a regular set.
- **(**) If *R* and *S* are regular sets, then $R \cup S$, *RS*, and R^* also are.

Theorem

A language L over $A \cup \overline{A}$ is an XML language if and only if the following three conditions hold true:

- $L \subset D_{\alpha}$ for some $\alpha \in A$,
- 3 $C_L(w) = C_L(w')$ for all $a \in A$ and $w, w' \in F_a(L)$,
- $S_a(L)$ is a regular set for all $a \in A$.

Introduction and Basics Characterization

Conditions for a Language to Be XML 4/4

Example

Non-XML grammar with start symbol *S*:

$$S \rightarrow aTT\overline{a}$$

 $T \rightarrow aTT\overline{a} \mid b\overline{b}$

•
$$L \subset D_a$$
 and $F_a(L) = L$,

- all $w \in L$ share the same $C_L(w)$ (by construction),
- S_a(L) = (a ∪ b)² and S_b(L) = {ε}, i.e. both surfaces are regular.

All three conditions are satisfied. \Rightarrow This grammar describes an XML language. \Rightarrow There must be an XML grammar generating this language: $S \rightarrow a(S|T)(S|T)\overline{z}$

Introduction and Basics Characterization

Conditions for a Language to Be XML 4/4

Example

Non-XML grammar with start symbol *S*:

$$\begin{array}{rcl} S &
ightarrow & aTT\overline{a} \ T &
ightarrow & aTT\overline{a} \mid b\overline{b} \end{array}$$

•
$$L \subset D_a$$
 and $F_a(L) = L$,

- all $w \in L$ share the same $C_L(w)$ (by construction),
- S_a(L) = (a ∪ b)² and S_b(L) = {ε}, i.e. both surfaces are regular.

All three conditions are satisfied. \Rightarrow This grammar describes an XML language. \Rightarrow There must be an XML grammar generating this language: $S \rightarrow 2(S|T)(S|T)\overline{2}$

$$\begin{array}{rcl} S &
ightarrow & a(S|T)(S|T) \overline{a} \ T &
ightarrow & b \overline{b} \end{array}$$

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- $\{cL\overline{c}\}$ and $\{cM\overline{c}\}$ both are XML languages,
- cabbac and caaddc are in H,
- (c, ddc) is in C_H(aa), so it also has to be in C_H(abba),
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- $\{cL\overline{c}\}$ and $\{cM\overline{c}\}$ both are XML languages,
- cabbac and caaddc are in H,
- $(c, d\overline{dc})$ is in $C_H(a\overline{a})$, so it also has to be in $C_H(ab\overline{ba})$,
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- {cLc} and {cMc} both are XML languages,
- cabbac and caaddc are in H,
- $(c, d\overline{dc})$ is in $C_H(a\overline{a})$, so it also has to be in $C_H(ab\overline{ba})$,
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- $\{cL\overline{c}\}$ and $\{cM\overline{c}\}$ both are XML languages,
- cabbac and caaddc are in H,
- $(c, d\overline{dc})$ is in $C_H(a\overline{a})$, so it also has to be in $C_H(ab\overline{ba})$,
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- $\{cL\overline{c}\}$ and $\{cM\overline{c}\}$ both are XML languages,
- cabbac and caaddc are in H,
- $(c, d\overline{dc})$ is in $C_H(a\overline{a})$, so it also has to be in $C_H(ab\overline{ba})$,
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- $\{cL\overline{c}\}$ and $\{cM\overline{c}\}$ both are XML languages,
- cabbac and caaddc are in H,
- $(c, d\overline{dc})$ is in $C_H(a\overline{a})$, so it also has to be in $C_H(ab\overline{ba})$,
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

Introduction and Basics Characterization

Closure Under Union and Difference

Theorem

XML languages are closed neither under union nor difference.

- Consider $L = D^*_{\{a,b\}}$, $M = D^*_{\{a,d\}}$, and $H = \{cL\overline{c}\} \cup \{cM\overline{c}\}$,
- $\{cL\overline{c}\}$ and $\{cM\overline{c}\}$ both are XML languages,
- cabbac and caaddc are in H,
- $(c, d\overline{dc})$ is in $C_H(a\overline{a})$, so it also has to be in $C_H(ab\overline{ba})$,
- but cabbaddc is not in H ⇒ XML languages are not closed under union,
- then (as direct consequence of De Morgan's theorem) XML languages are not closed under difference either.

More Results

- XML languages are closed under intersection.
- For each XML language *L* there is exactly one reduced XML grammar generating *L* if variable names and entities are ignored.
- It is decidable if an XML language *L* is included in or equal to another XML language *M*.
- It is also decidable if a regular language L ⊂ D_A is an XML language.
- It is however undecidable if a context-free language is an XML language.

More Results

- XML languages are closed under intersection.
- For each XML language *L* there is exactly one reduced XML grammar generating *L* if variable names and entities are ignored.
- It is decidable if an XML language *L* is included in or equal to another XML language *M*.
- It is also decidable if a regular language L ⊂ D_A is an XML language.
- It is however undecidable if a context-free language is an XML language.

More Results

- XML languages are closed under intersection.
- For each XML language *L* there is exactly one reduced XML grammar generating *L* if variable names and entities are ignored.
- It is decidable if an XML language *L* is included in or equal to another XML language *M*.
- It is also decidable if a regular language L ⊂ D_A is an XML language.
- It is however undecidable if a context-free language is an XML language.

More Results

- XML languages are closed under intersection.
- For each XML language *L* there is exactly one reduced XML grammar generating *L* if variable names and entities are ignored.
- It is decidable if an XML language *L* is included in or equal to another XML language *M*.
- It is also decidable if a regular language L ⊂ D_A is an XML language.
- It is however undecidable if a context-free language is an XML language.

More Results

Introduction and Basics Characterization

- XML languages are closed under intersection.
- For each XML language *L* there is exactly one reduced XML grammar generating *L* if variable names and entities are ignored.
- It is decidable if an XML language *L* is included in or equal to another XML language *M*.
- It is also decidable if a regular language L ⊂ D_A is an XML language.
- It is however undecidable if a context-free language is an XML language.

Introduction and Basics Recognition Closure

Overview

Introduction and Basics Characterization

2 One-Unambiguous Regular Languages Introduction and Basics

- Recognition
- Closure
- - Introduction and Basics
 - Language Classes
 - Evaluating XML Schema Languages

Introduction and Basics Recognition Closure

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model groups) on the right-hand side of productions have to be one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML: For compatibility [with SGML], it is an error if the content model allows an element to match more than one occurrence of an element type in the content model.

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model groups) on the right-hand side of productions have to be one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML: For compatibility [with SGML], it is an error if the content model allows an element to match more than one occurrence of an element type in the content model.

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model groups) on the right-hand side of productions have to be one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML: For compatibility [with SGML], it is an error if the content model allows an element to match more than one occurrence of an element type in the content model.

Motivation

Why should we care about one-unambiguous regular languages?

Because in SGML the regular expressions (more precisely: model groups) on the right-hand side of productions have to be one-unambiguous.

But who cares about SGML?

The W3C does in its recommendation for XML: For compatibility [with SGML], it is an error if the content model allows an element to match more than one occurrence of an element type in the content model.

Informal Description

- If we can determine uniquely which symbol of a regular expression corresponds to a symbol in the input word (while knowing the whole word), the regular expression is unambiguous.
- If we can do so without looking beyond that symbol, the regular expression is one-unambiguous.

Example

- (bc) + (bd) is unambiguous, but not one-unambiguous,
- b(c+d) is one-unambiguous (hence also unambiguous).

Informal Description

- If we can determine uniquely which symbol of a regular expression corresponds to a symbol in the input word (while knowing the whole word), the regular expression is unambiguous.
- If we can do so without looking beyond that symbol, the regular expression is one-unambiguous.

Example

- (bc) + (bd) is unambiguous, but not one-unambiguous,
- b(c + d) is one-unambiguous (hence also unambiguous).

Informal Description

- If we can determine uniquely which symbol of a regular expression corresponds to a symbol in the input word (while knowing the whole word), the regular expression is unambiguous.
- If we can do so without looking beyond that symbol, the regular expression is one-unambiguous.

Example

- (bc) + (bd) is unambiguous, but not one-unambiguous,
- b(c+d) is one-unambiguous (hence also unambiguous).

Informal Description

- If we can determine uniquely which symbol of a regular expression corresponds to a symbol in the input word (while knowing the whole word), the regular expression is unambiguous.
- If we can do so without looking beyond that symbol, the regular expression is one-unambiguous.

Example

- (bc) + (bd) is unambiguous, but not one-unambiguous,
- b(c+d) is one-unambiguous (hence also unambiguous).

Introduction and Basics Recognition Closure

A New Perspective on the First Section

How is one-unambiguity incorporated into the XML grammars and languages of the previous section?

It is not. Thus the XML languages of the previous section are not even proper DTD languages.

Example: an XML language lacking one-unambiguity

$$N = \{X_a, X_b\}$$

$$T = \{a, \overline{a}, b, \overline{b}\}$$

$$S = X_a$$

$$P = \{X_a \to aX_b^*X_b^*\overline{a}, X_b \to b \text{ something } \overline{b}\}$$

A New Perspective on the First Section

How is one-unambiguity incorporated into the XML grammars and languages of the previous section?

It is not. Thus the XML languages of the previous section are not even proper DTD languages.

Example: an XML language lacking one-unambiguity

$$N = \{X_a, X_b\}$$

$$T = \{a, \overline{a}, b, \overline{b}\}$$

$$S = X_a$$

$$P = \{X_a \to aX_b^*X_b^*\overline{a}, X_b \to b \text{ something } \overline{b}\}$$

Introduction and Basics Recognition Closure

Marking of Regular Expressions

Example: $(a + b)^* a (ab)^*$

- $(a_1 + b_1)^* a_2 (a_3 b_2)^*$ is a marking,
- $(a_4 + b_2)^* a_1 (a_5 b_1)^*$ is a marking,
- $(a_1 + b_2)^* a_3 (a_1 b_1)^*$ is not a marking.

- Assigning subscripts to occurrences of symbols,
- subscript is unique for each sort of symbols,
- marking of a regular expression E over alphabet Σ denoted by E' over the alphabet Π ,
- dropping of subscripts denoted by [↓], i. e. (E')[↓] = E and (w')[↓] = w.

Introduction and Basics Recognition Closure

Marking of Regular Expressions

Example: $(a + b)^* a (ab)^*$

- $(a_1 + b_1)^* a_2 (a_3 b_2)^*$ is a marking,
- $(a_4 + b_2)^* a_1 (a_5 b_1)^*$ is a marking,
- $(a_1 + b_2)^* a_3 (a_1 b_1)^*$ is not a marking.

- Assigning subscripts to occurrences of symbols,
- subscript is unique for each sort of symbols,
- marking of a regular expression E over alphabet Σ denoted by E' over the alphabet Π ,
- dropping of subscripts denoted by ^b, i.e. (E')^b = E and (w')^b = w.

Introduction and Basics Recognition Closure

Marking of Regular Expressions

Example: $(a + b)^* a (ab)^*$

- $(a_1 + b_1)^* a_2 (a_3 b_2)^*$ is a marking,
- $(a_4 + b_2)^* a_1 (a_5 b_1)^*$ is a marking,
- $(a_1 + b_2)^* a_3 (a_1 b_1)^*$ is not a marking.

- Assigning subscripts to occurrences of symbols,
- subscript is unique for each sort of symbols,
- marking of a regular expression E over alphabet Σ denoted by E' over the alphabet Π ,
- dropping of subscripts denoted by ^{\$\beta\$}, i. e. (E')^{\$\beta\$} = E and (w')^{\$\beta\$} = w.

Introduction and Basics Recognition Closure

Marking of Regular Expressions

Example: $(a + b)^* a (ab)^*$

- $(a_1 + b_1)^* a_2 (a_3 b_2)^*$ is a marking,
- $(a_4 + b_2)^* a_1 (a_5 b_1)^*$ is a marking,
- $(a_1 + b_2)^* a_3 (a_1 b_1)^*$ is not a marking.

- Assigning subscripts to occurrences of symbols,
- subscript is unique for each sort of symbols,
- marking of a regular expression E over alphabet Σ denoted by E' over the alphabet Π ,
- dropping of subscripts denoted by ^{\$\beta\$}, i. e. (E')^{\$\beta\$} = E and (w')^{\$\beta\$} = w.

Definition of One-Unambiguous Regular Languages

Definition

Let t, u, v, w be words over Π and $x, y \in \Pi$. A regular expr. E is one-unambiguous iff

$$uxv, uyw \in L(E') \land x \neq y \Rightarrow x^{\natural} \neq y^{\natural}.$$

If \exists one-unambiguous E for $L \Rightarrow L$ is one-unambiguous.

Examples

- E = (bc) + (bd), $E' = (b_1c_1) + (b_2d_1)$, $b_1c_1 \in L(E')$, $b_2d_1 \in L(E')$: $b_1 \neq b_2$, but b = b therefore E is not one-unambiguous.
- F = b(c + d), $F' = b_1(c_1 + d_1)$ satisfies the conditions $\Rightarrow F$ is one-unambiguous.

Definition of One-Unambiguous Regular Languages

Definition

Let t, u, v, w be words over Π and $x, y \in \Pi$. A regular expr. E is one-unambiguous iff

$$uxv, uyw \in L(E') \land x \neq y \Rightarrow x^{\natural} \neq y^{\natural}.$$

If \exists one-unambiguous E for $L \Rightarrow L$ is one-unambiguous.

Examples

- E = (bc) + (bd), $E' = (b_1c_1) + (b_2d_1)$, $b_1c_1 \in L(E')$, $b_2d_1 \in L(E')$: $b_1 \neq b_2$, but b = b therefore E is not one-unambiguous.
- F = b(c + d), $F' = b_1(c_1 + d_1)$ satisfies the conditions $\Rightarrow F$ is one-unambiguous.

Definition of One-Unambiguous Regular Languages

Definition

Let t, u, v, w be words over Π and $x, y \in \Pi$. A regular expr. E is one-unambiguous iff

$$uxv, uyw \in L(E') \land x \neq y \Rightarrow x^{\natural} \neq y^{\natural}.$$

If \exists one-unambiguous E for $L \Rightarrow L$ is one-unambiguous.

Examples

- E = (bc) + (bd), $E' = (b_1c_1) + (b_2d_1)$, $b_1c_1 \in L(E')$, $b_2d_1 \in L(E')$: $b_1 \neq b_2$, but b = b therefore E is not one-unambiguous.
- F = b(c + d), $F' = b_1(c_1 + d_1)$ satisfies the conditions $\Rightarrow F$ is one-unambiguous.

Introduction and Basics Recognition Closure

Definition of first, last and follow

Definition

Let L be a language.

 $\begin{array}{lll} \operatorname{first}(L) & := & \{b \mid \text{there is a word } w \text{ such that } bw \in L\} \\ \operatorname{last}(L) & := & \{b \mid \text{there is a word } w \text{ such that } wb \in L\} \\ \operatorname{follow}(L,a) & := & \{b \mid \text{there are words } v \text{ and } w \text{ such that} \\ & vabw \in L\}, \text{ for each symbol } a \end{array}$

For a regular expression E we define set(E) as set(L(E)).

Example: E = b(c + d)

$$first(E) = \{b\}, \quad last(E) = follow(E, b) = \{c, d\}, \\ follow(E, c) = follow(E, d) = \emptyset$$

Introduction and Basics Recognition Closure

Definition of first, last and follow

Definition

Let L be a language.

For a regular expression E we define set(E) as set(L(E)).

Example: E = b(c + d)

$$\begin{aligned} \mathsf{first}(E) &= \{b\}, \quad \mathsf{last}(E) = \mathsf{follow}(E, b) = \{c, d\}, \\ \mathsf{follow}(E, c) &= \mathsf{follow}(E, d) = \emptyset \end{aligned}$$

Introduction and Basics Recognition Closure

An Alternative Definition of One-Unambiguity

Theorem

A regular expression E is one-unambiguous iff

 $2 \quad \forall z \in sym(E') \land x, y \in follow(E', z) : x \neq y \Rightarrow x^{\natural} \neq y^{\natural},$

where sym(E') is the set of symbols occurring in E'.

Example: E = b(c + d) marked as $b_1(c_1 + d_1)$

• first $(E') = \{b_1\}$ (condition 1 is satisfied),

• follow(E, c_1) = follow(E, d_1) = \emptyset , follow(E, b) = { c_1, d_1 }; $c_1 \neq d_1 \Rightarrow c \neq d$ (condition 2 is satisfied).

E is one-unambiguous.

Introduction and Basics Recognition Closure

An Alternative Definition of One-Unambiguity

Theorem

A regular expression E is one-unambiguous iff

- $2 \quad \forall z \in sym(E') \land x, y \in follow(E', z) : x \neq y \Rightarrow x^{\natural} \neq y^{\natural},$

where sym(E') is the set of symbols occurring in E'.

Example: E = b(c + d) marked as $b_1(c_1 + d_1)$

• first $(E') = \{b_1\}$ (condition 1 is satisfied),

• follow(E, c_1) = follow(E, d_1) = \emptyset , follow(E, b) = { c_1, d_1 }; $c_1 \neq d_1 \Rightarrow c \neq d$ (condition 2 is satisfied).

E is one-unambiguous.

Introduction and Basics Recognition Closure

An Alternative Definition of One-Unambiguity

Theorem

A regular expression E is one-unambiguous iff

- $2 \quad \forall z \in sym(E') \land x, y \in follow(E', z) : x \neq y \Rightarrow x^{\natural} \neq y^{\natural},$

where sym(E') is the set of symbols occurring in E'.

Example: E = b(c + d) marked as $b_1(c_1 + d_1)$

- first $(E') = \{b_1\}$ (condition 1 is satisfied),
- follow(E, c_1) = follow(E, d_1) = \emptyset , follow(E, b) = { c_1, d_1 }; $c_1 \neq d_1 \Rightarrow c \neq d$ (condition 2 is satisfied).

E is one-unambiguous.

Introduction and Basics Recognition Closure

Glushkov Automata 1/4

Definition

Let *E* be a regular expression. The corresponding Glushkov automaton $G_E = (Q_E, \Sigma, \delta_E, q_I, F_E)$ is defined by:

Q_E := all symbols of E' and a new, initial state q_I,
for a ∈ Σ: δ_E(q_I, a) := {x | x ∈ first(E'), x^t = a},
for x ∈ sym(E') and a ∈ Σ:
δ_E(x, a) = {x | x ∈ follow(E' x) x^t = a}

• $F_E = \begin{cases} \mathsf{last}(E') \cup \{q_l\}, & \mathsf{if } \varepsilon \in L(E) \\ \mathsf{last}(E'), & \mathsf{otherwise.} \end{cases}$

Introduction and Basics Recognition Closure

Glushkov Automata 1/4

Definition

Let *E* be a regular expression. The corresponding Glushkov automaton $G_E = (Q_E, \Sigma, \delta_E, q_I, F_E)$ is defined by:

Q
$$Q_E :=$$
 all symbols of E' and a new, initial state q_I ,

2 for
$$a \in \Sigma$$
: $\delta_E(q_I, a) := \{x \mid x \in \text{first}(E'), x^{\natural} = a\},\$

• for $x \in \text{sym}(E')$ and $a \in \Sigma$: $\delta_E(x, a) = \{y \mid y \in \text{follow}(E', x), y^{\natural} = 0\}$ • $F_E = \begin{cases} \text{last}(E') \cup \{q_I\}, & \text{if } \varepsilon \in L(E) \end{cases}$

otherwise

Introduction and Basics Recognition Closure

Glushkov Automata 1/4

Definition

Let *E* be a regular expression. The corresponding Glushkov automaton $G_E = (Q_E, \Sigma, \delta_E, q_I, F_E)$ is defined by:

Introduction and Basics Recognition Closure

Glushkov Automata 1/4

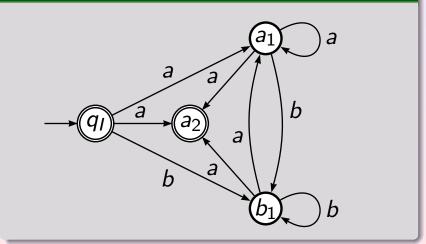
Definition

Let *E* be a regular expression. The corresponding Glushkov automaton $G_E = (Q_E, \Sigma, \delta_E, q_I, F_E)$ is defined by:

Introduction and Basics Recognition Closure

Glushkov Automata 2/4

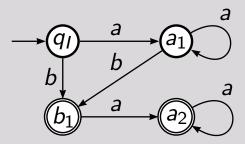
Example: $(a + b)^*a + \varepsilon$ marked as $(a_1 + b_1)^*a_2 + \varepsilon$



Introduction and Basics Recognition Closure

Glushkov Automata 3/4

Example: a^*ba^* marked as $a_1^*b_1a_2^*$



Stefan Tittel Formal Language Foundations and Schema Languages

Introduction and Basics Recognition Closure

Glushkov Automata 4/4

- No transition leads back to the initial state.
- Two transitions that lead to the same state have identical labels.
- G_E can be computed in time quadratic in the size of E.

Theorem

A regular expression E is one-unambiguous iff G_E is a DFA.

With Glushkov automata we can decide rather efficiently if a regular expression is one-unambiguous.

Introduction and Basics Recognition Closure

Glushkov Automata 4/4

- No transition leads back to the initial state.
- Two transitions that lead to the same state have identical labels.
- G_E can be computed in time quadratic in the size of E.

Theorem

A regular expression E is one-unambiguous iff G_E is a DFA.

With Glushkov automata we can decide rather efficiently if a regular expression is one-unambiguous.

Introduction and Basics Recognition Closure

Glushkov Automata 4/4

- No transition leads back to the initial state.
- Two transitions that lead to the same state have identical labels.
- G_E can be computed in time quadratic in the size of E.

Theorem

A regular expression E is one-unambiguous iff G_E is a DFA.

With Glushkov automata we can decide rather efficiently if a regular expression is one-unambiguous.

Introduction and Basics Recognition Closure

Overview

XML Languages and Grammars
 Introduction and Basics
 Characterization

One-Unambiguous Regular Languages
 Introduction and Basics

- Recognition
- Closure
- 3 Analysis of XML Schema Languages
 - Introduction and Basics
 - Language Classes
 - Evaluating XML Schema Languages

Introduction and Basics Recognition Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture)

- ... that for each regular language *L* the corresponding minimum-state DFA *MS*(*L*) is uniquely determined.
- ... how minimizing a DFA can be achieved by equivalence-class construction.
- ... that we can transform an NFA to an equivalent DFA using subset construction.
- ... how to transform a regular expression to a Glushkov automaton.

Introduction and Basics Recognition Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) ...

- ... that for each regular language *L* the corresponding minimum-state DFA *MS*(*L*) is uniquely determined.
- ... how minimizing a DFA can be achieved by equivalence-class construction.
- ... that we can transform an NFA to an equivalent DFA using subset construction.
- ... how to transform a regular expression to a Glushkov automaton.

Introduction and Basics Recognition Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) ...

- ... that for each regular language *L* the corresponding minimum-state DFA *MS*(*L*) is uniquely determined.
- ... how minimizing a DFA can be achieved by equivalence-class construction.
- ... that we can transform an NFA to an equivalent DFA using subset construction.
- ... how to transform a regular expression to a Glushkov automaton.

Introduction and Basics Recognition Closure

Initial Considerations 1/2

We know (mostly from the GTI lecture) ...

- ... that for each regular language *L* the corresponding minimum-state DFA *MS*(*L*) is uniquely determined.
- ... how minimizing a DFA can be achieved by equivalence-class construction.
- ... that we can transform an NFA to an equivalent DFA using subset construction.
- ... how to transform a regular expression to a Glushkov automaton.

Introduction and Basics Recognition Closure

- Idea: Examine the structural properties of MS(L) that characterize an one-unambiguous language L.
- If *E* is a regular expression, *MS*(*L*(*E*)) can be achieved by minimizing *G_E*.
- If E is one-unambiguous, we do not need to use subset construction on G_E, because G_E already is a DFA.
- Question: What properties of Glushkov automata are preserved under minimization, but not necessarily under subset construction?

Introduction and Basics Recognition Closure

- Idea: Examine the structural properties of MS(L) that characterize an one-unambiguous language L.
- If *E* is a regular expression, *MS*(*L*(*E*)) can be achieved by minimizing *G_E*.
- If E is one-unambiguous, we do not need to use subset construction on G_E , because G_E already is a DFA.
- Question: What properties of Glushkov automata are preserved under minimization, but not necessarily under subset construction?

Introduction and Basics Recognition Closure

- Idea: Examine the structural properties of MS(L) that characterize an one-unambiguous language L.
- If *E* is a regular expression, *MS*(*L*(*E*)) can be achieved by minimizing *G_E*.
- If E is one-unambiguous, we do not need to use subset construction on G_E , because G_E already is a DFA.
- Question: What properties of Glushkov automata are preserved under minimization, but not necessarily under subset construction?

Introduction and Basics Recognition Closure

- Idea: Examine the structural properties of MS(L) that characterize an one-unambiguous language L.
- If *E* is a regular expression, *MS*(*L*(*E*)) can be achieved by minimizing *G_E*.
- If E is one-unambiguous, we do not need to use subset construction on G_E , because G_E already is a DFA.
- Question: What properties of Glushkov automata are preserved under minimization, but not necessarily under subset construction?

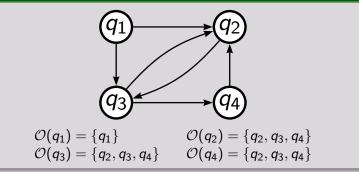
Introduction and Basics Recognition Closure

Orbits

Definition: Orbit

For q being a state of an NFA, $\mathcal{O}(q)$ is the strongly connected component of q.

Example



Stefan Tittel

Formal Language Foundations and Schema Languages

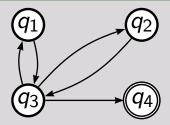
Introduction and Basics Recognition Closure

Gates

Definition

If $q \in F$ or $\exists q' \notin \mathcal{O}(q) : ((q, a), q') \in \delta$, then q is a gate of $\mathcal{O}(q)$.

Example



- q₁ and q₂ are not gates of their orbits.
- q_3 and q_4 are gates of their orbits.

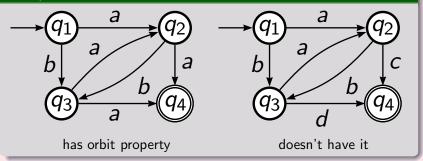
Introduction and Basics Recognition Closure

Orbit Property

Definition

An NFA has the orbit property if all gates of each orbit have identical connections to the outside world.

Example



Introduction and Basics Recognition Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

- **()** For a state q, restrict state set to $\mathcal{O}(q)$,
- I set q as the initial state,
- **(3)** set the gates of $\mathcal{O}(q)$ as the final states,
- denote the resulting automaton as M_q.

- The language of M_q is called the orbit language of q.
- The languages L(M_q), q ∈ Q_M are called the orbit languages of M.

Introduction and Basics Recognition Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

- **()** For a state q, restrict state set to $\mathcal{O}(q)$,
- set q as the initial state,
- 3) set the gates of $\mathcal{O}(q)$ as the final states,
- denote the resulting automaton as M_q.

- The language of M_q is called the orbit language of q.
- The languages L(M_q), q ∈ Q_M are called the orbit languages of M.

Introduction and Basics Recognition Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

- **()** For a state q, restrict state set to $\mathcal{O}(q)$,
- set q as the initial state,
- Set the gates of $\mathcal{O}(q)$ as the final states,
 - denote the resulting automaton as M_q.

- The language of M_q is called the orbit language of q.
- The languages L(M_q), q ∈ Q_M are called the orbit languages of M.

Introduction and Basics Recognition Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

- **()** For a state q, restrict state set to $\mathcal{O}(q)$,
- set q as the initial state,
- **③** set the gates of $\mathcal{O}(q)$ as the final states,
- denote the resulting automaton as M_q .

- The language of M_q is called the orbit language of q.
- The languages $L(M_q), q \in Q_M$ are called the orbit languages of M.

Introduction and Basics Recognition Closure

Orbit Automata and Orbit Languages 1/2

Definition: Orbit Automaton

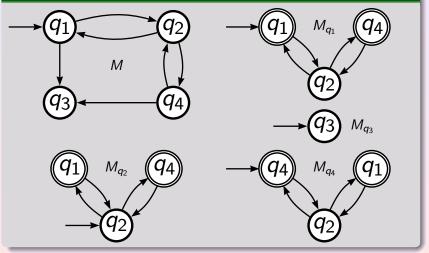
- **()** For a state q, restrict state set to $\mathcal{O}(q)$,
- set q as the initial state,
- **③** set the gates of $\mathcal{O}(q)$ as the final states,
- denote the resulting automaton as M_q .

- The language of M_q is called the orbit language of q.
- The languages $L(M_q), q \in Q_M$ are called the orbit languages of M.

Introduction and Basics Recognition Closure

Orbit Automata and Orbit Languages 2/2

Example



Stefan Tittel Formal Language Foundations and Schema Languages

Theorem

M is a minimal DFA. If and only if

- *M* has the orbit property,
- all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable from the one-unambiguous regular expressions for the orbit languages.

Definition

 $\mathcal{O}(q)$ is trivial if $\mathcal{O}(q) = \{q\}$ and $(q,q) \notin \delta$.

Theorem

M is a minimal DFA. If and only if

- *M* has the orbit property,
- all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable from the one-unambiguous regular expressions for the orbit languages.

Definition

 $\mathcal{O}(q)$ is trivial if $\mathcal{O}(q) = \{q\}$ and $(q,q) \notin \delta$.

Theorem

M is a minimal DFA. If and only if

- *M* has the orbit property,
- all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable from the one-unambiguous regular expressions for the orbit languages.

Definition

 $\mathcal{O}(q)$ is trivial if $\mathcal{O}(q) = \{q\}$ and $(q,q) \notin \delta$.

Theorem

M is a minimal DFA. If and only if

- *M* has the orbit property,
- all orbit languages of M are one-unambiguous,

then L(M) is one-unambiguous.

An one-unambiguous regular expression for L(M) is constructable from the one-unambiguous regular expressions for the orbit languages.

Definition

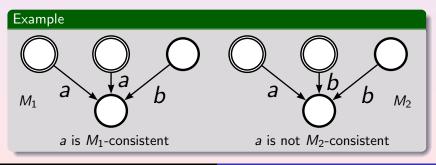
 $\mathcal{O}(q)$ is trivial if $\mathcal{O}(q) = \{q\}$ and $(q,q) \notin \delta$.

Introduction and Basics Recognition Closure

M-Consistency

Definition

- *M* is a DFA,
- $s \in \Sigma_M$ is *M*-consistent if
 - $\exists f(s) \in Q_M : \forall q \in F_M : ((q,s), f(s)) \in \delta_M,$
- $S \subseteq \Sigma_M$ is *M*-consistent if $\forall s \in S : s$ is *M*-consistent.



Stefan Tittel Formal Language Foundations and Schema Languages

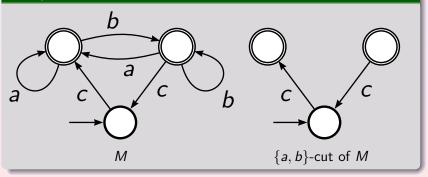
Introduction and Basics Recognition Closure

S-Cut

Definition: S-Cut M_S of M

 $\forall a \in S : \forall q \in Q_M : \forall q' \in F_M : \text{remove } ((q, a), q') \text{ from } \delta_M$

Example



Stefan Tittel Formal Language Foundations and Schema Languages

Introduction and Basics Recognition Closure

Conditions for a DFA to Be One-Unambiguous 1/2

Theorem

Let

- M be a minimal DFA,
- S be an M-consistent set of symbols,

now iff

- *M_S* satisfies the orbit property,
- all orbit languages of M_S are one-unambiguous,

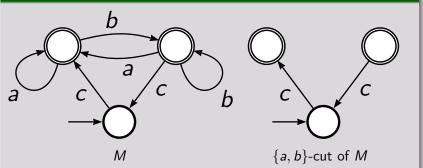
then L(M) is one-unambiguous.

We will extend this theorem to a decision algorithm very soon.

Introduction and Basics Recognition Closure

Conditions for a DFA to Be One-Unambiguous 2/2

Example



The $\{a, b\}$ -cut of M has only one-unambiguous orbits. Hence L(M) is one-unambiguous and can be denoted by the one-unambiguous regular expression $c(a + b(\varepsilon + cc))^*$.

Introduction and Basics Recognition Closure

Decision Algorithm

```
boolean one-unambiguous (MinimalDFA M) {
   compute S := \{a \in \Sigma \mid a \text{ is } M \text{-consistent}\};
  if (M has a single, trivial orbit) {return true;}
  if (M has a single, nontrivial orbit && S = \emptyset) {return false;}
   compute the orbits of M_{S}:
   if (!OrbitProperty(M<sub>5</sub>)) {return false;}
   for (each orbit K of M_5) {
     choose x \in K:
     if (!one-unambiguous((M_S)_x) \{return false;\}
   }
   return true;
}
```

Introduction and Basics Recognition Closure

Overview

XML Languages and Grammars
 Introduction and Basics

Characterization

2 One-Unambiguous Regular Languages

- Introduction and Basics
- Recognition
- Closure

3 Analysis of XML Schema Languages

- Introduction and Basics
- Language Classes
- Evaluating XML Schema Languages

Introduction and Basics Recognition Closure

Closure

- L is a language,
- w is a word,
- {v | wv ∈ L} is the derivative of L with respect to w and denoted by w\L.
- The family of one-unambiguous regular languages is closed under derivatives.
- One-unambiguous regular expressions are not closed under derivatives, unless they are in a star normal form.
- The family of one-unambigous regular languages is not closed under union, concatenation or star.

Introduction and Basics Recognition Closure

Closure

- L is a language,
- w is a word,
- {v | wv ∈ L} is the derivative of L with respect to w and denoted by w\L.
- The family of one-unambiguous regular languages is closed under derivatives.
- One-unambiguous regular expressions are not closed under derivatives, unless they are in a star normal form.
- The family of one-unambigous regular languages is not closed under union, concatenation or star.

Introduction and Basics Recognition Closure

Closure

- L is a language,
- w is a word,
- {v | wv ∈ L} is the derivative of L with respect to w and denoted by w\L.
- The family of one-unambiguous regular languages is closed under derivatives.
- One-unambiguous regular expressions are not closed under derivatives, unless they are in a star normal form.
- The family of one-unambigous regular languages is not closed under union, concatenation or star.

Introduction and Basics Recognition Closure

Closure

- L is a language,
- w is a word,
- {v | wv ∈ L} is the derivative of L with respect to w and denoted by w\L.
- The family of one-unambiguous regular languages is closed under derivatives.
- One-unambiguous regular expressions are not closed under derivatives, unless they are in a star normal form.
- The family of one-unambigous regular languages is not closed under union, concatenation or star.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Overview

- XML Languages and Grammars
 Introduction and Basics
 - Characterization
- One-Unambiguous Regular Languages
 Introduction and Basics
 - Introduction and Bas
 - Recognition
 - Closure
- 3 Analysis of XML Schema Languages
 - Introduction and Basics
 - Language Classes
 - Evaluating XML Schema Languages

Introduction and Basics Language Classes Evaluating XML Schema Languages

XML Schema Languages 1/2

Definition

- An XML schema describes constraints on the structure and content beyond the basic syntax constraints of XML itself.
- It is specified by an XML schema language.

Examples of XML schema languages

DTD, XML Schema, RELAX (NG), DSD, XDuce

Attention

"XML schema" \neq "XML Schema"

Introduction and Basics Language Classes Evaluating XML Schema Languages

XML Schema Languages 1/2

Definition

- An XML schema describes constraints on the structure and content beyond the basic syntax constraints of XML itself.
- It is specified by an XML schema language.

Examples of XML schema languages

DTD, XML Schema, RELAX (NG), DSD, XDuce

Attention

"XML schema" \neq "XML Schema"

Introduction and Basics Language Classes Evaluating XML Schema Languages

XML Schema Languages 1/2

Definition

- An XML schema describes constraints on the structure and content beyond the basic syntax constraints of XML itself.
- It is specified by an XML schema language.

Examples of XML schema languages

DTD, XML Schema, RELAX (NG), DSD, XDuce

Attention

"XML schema" \neq "XML Schema"

Introduction and Basics Language Classes Evaluating XML Schema Languages

XML Schema Languages 2/2

. . .

Example: XML Schema Specification of a Business Card (Extract)

```
<schema [...]
  <element name="card" type="b:card_type"/>
  <element name="name" type="string"/>
  <element name="logo" type="b:logo_type"/>
  <complexType name="card_type">
    <sequence>
      <element ref="b:name"/>
      <element ref="b:logo" minOccurs="0"/>
    </sequence>
  </complexType>
  <complexType name="logo_type">
    <attribute name="url" type="anyURI"/>
```

Introduction and Basics Language Classes Evaluating XML Schema Languages

Motivation

We are interested in ...

- ... expression power.
- ② ... closure properties.
- O ... document validation.

Examples

- Can I model my constraints with a certain XML schema language?
- What XHTML 1.0 documents are still valid XHTML 1.1 documents?
- Can I efficiently check if a document conforms to an XML schema?

Introduction and Basics Language Classes Evaluating XML Schema Languages

Motivation

We are interested in ...

- ... expression power.
- ... closure properties.
- O ... document validation.

Examples

- Can I model my constraints with a certain XML schema language?
- What XHTML 1.0 documents are still valid XHTML 1.1 documents?
- Can I efficiently check if a document conforms to an XML schema?

Introduction and Basics Language Classes Evaluating XML Schema Languages

Motivation

We are interested in ...

- ... expression power.
- **2** . . . closure properties.

O ... document validation.

- Can I model my constraints with a certain XML schema language?
- What XHTML 1.0 documents are still valid XHTML 1.1 documents?
- Can I efficiently check if a document conforms to an XML schema?

Introduction and Basics Language Classes Evaluating XML Schema Languages

Motivation

We are interested in ...

- ... expression power.
- **2** . . . closure properties.

3 ... document validation.

- Can I model my constraints with a certain XML schema language?
- What XHTML 1.0 documents are still valid XHTML 1.1 documents?
- Can I efficiently check if a document conforms to an XML schema?

Introduction and Basics Language Classes Evaluating XML Schema Languages

Motivation

We are interested in ...

- ... expression power.
- **2** . . . closure properties.
- 3 ... document validation.

- Can I model my constraints with a certain XML schema language?
- What XHTML 1.0 documents are still valid XHTML 1.1 documents?
- Can I efficiently check if a document conforms to an XML schema?

Introduction and Basics Language Classes Evaluating XML Schema Languages

Motivation

We are interested in ...

- ... expression power.
- **2** . . . closure properties.
- 3 ... document validation.

- Can I model my constraints with a certain XML schema language?
- What XHTML 1.0 documents are still valid XHTML 1.1 documents?
- Can I efficiently check if a document conforms to an XML schema?

Introduction and Basics Language Classes Evaluating XML Schema Languages

Regular Tree Grammars 1/3

Definition

A model group is a regular expression in which the following additional operators are allowed:

- ? where *E*? denotes $L(E + \varepsilon)$
- & where F&G denotes L(FG + GF)

• + – where
$$E^+$$
 denotes $L(EE^*)$

Definition: Regular Tree Grammar G = (N, T, P, S)

- N = non-terminal symbols,
- T = terminal symbols,
- P = productions of the form $X \rightarrow a$ *Expression* with $X \in N$, $a \in T$ and *Expression* model group over N,
- *S* = start symbols.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Regular Tree Grammars 1/3

Definition

A model group is a regular expression in which the following additional operators are allowed:

- ? where *E*? denotes $L(E + \varepsilon)$
- & where F&G denotes L(FG + GF)
- + where E^+ denotes $L(EE^*)$

Definition: Regular Tree Grammar G = (N, T, P, S)

- N = non-terminal symbols,
- T =terminal symbols,
- P = productions of the form $X \rightarrow a$ *Expression* with $X \in N$, $a \in T$ and *Expression* model group over N,
- *S* = start symbols.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Regular Tree Grammars 2/3

Example: A Tree Grammar for a DTD

<!DOCTYPE book [

<!ELEMENT book (author+, publisher) >

<!ELEMENT author (#PCDATA) >

<!ELEMENT publisher (EMPTY) >

<!ATTLIST publisher Name CDATA #IMPLIED >

]>

- $N = \{Book, Author, Publisher, Pcdata\},\$
- $T = \{book, author, publisher, pcdata\},\$

$$S = \{Book\},\$$

$$P = \{Book \rightarrow book(Author^+, Publisher)\}$$

Author \rightarrow author(Pcdata), Publisher \rightarrow publisher(ε),

 $Pcdata \rightarrow pcdata(\varepsilon)\}.$

Introduction and Basics Language Classes Evaluating XML Schema Languages

Regular Tree Grammars 3/3

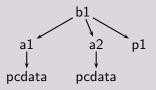
Example

A possible document complying with this DTD:

<book>

<author>J. E. Hopcroft</author>
<author>J. D. Ullman</author>
<publisher Name="Addison-Wesley"/>
</book>

An instance tree for this document:



Stefan Tittel Formal Language Foundations and Schema Languages

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1, N2, T, P1, P2, S) with

- T and S as usual,
- N1 = non-terminal symbols used for deriving trees,
- N2 = non-terminal symbols used for content-model spec.,
- $P1 = \text{productions of the form } A \rightarrow aX \text{ with } A \in N1, X \in N2,$ $a \in T \text{ (only one production per symbol } \in N1\text{),}$
- P2 = prod. of the form X → Exp with X ∈ N2, Exp model group over N1 (only one production per symbol ∈ N2)

Definition

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1, N2, T, P1, P2, S) with

- T and S as usual,
- N1 = non-terminal symbols used for deriving trees,
- N2 = non-terminal symbols used for content-model spec.,
- $P1 = \text{productions of the form } A \rightarrow aX \text{ with } A \in N1, X \in N2,$ $a \in T \text{ (only one production per symbol } \in N1),$
- P2 = prod. of the form $X \to Exp$ with $X \in N2$, Exp model group over N1 (only one production per symbol $\in N2$)

Definition

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1, N2, T, P1, P2, S) with

- T and S as usual,
- N1 = non-terminal symbols used for deriving trees,
- N2 = non-terminal symbols used for content-model spec.,
- $P1 = \text{productions of the form } A \rightarrow aX \text{ with } A \in N1, X \in N2,$ $a \in T \text{ (only one production per symbol } \in N1),$
- ▶ P2 = prod. of the form $X \to Exp$ with $X \in N2$, Exp model group over N1 (only one production per symbol $\in N2$)

Definition

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1, N2, T, P1, P2, S) with

- T and S as usual,
- N1 = non-terminal symbols used for deriving trees,
- N2 = non-terminal symbols used for content-model spec.,
- $P1 = \text{productions of the form } A \rightarrow aX \text{ with } A \in N1, X \in N2,$ $a \in T \text{ (only one production per symbol } \in N1\text{),}$

• P2 = prod. of the form $X \to Exp$ with $X \in N2$, Exp model group over N1 (only one production per symbol $\in N2$).

Definition

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1, N2, T, P1, P2, S) with

- T and S as usual,
- N1 = non-terminal symbols used for deriving trees,
- N2 = non-terminal symbols used for content-model spec.,
- $P1 = \text{productions of the form } A \rightarrow aX \text{ with } A \in N1, X \in N2,$ $a \in T \text{ (only one production per symbol } \in N1\text{),}$
- P2 = prod. of the form $X \to Exp$ with $X \in N2$, Exp model group over N1 (only one production per symbol $\in N2$).

Definition

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 1/2

Definition: Grammar in Normal Form 1 (NF1)

Grammar G = (N1, N2, T, P1, P2, S) with

- T and S as usual,
- N1 = non-terminal symbols used for deriving trees,
- N2 = non-terminal symbols used for content-model spec.,
- $P1 = \text{productions of the form } A \rightarrow aX \text{ with } A \in N1, X \in N2,$ $a \in T \text{ (only one production per symbol } \in N1\text{),}$
- P2 = prod. of the form $X \to Exp$ with $X \in N2$, Exp model group over N1 (only one production per symbol $\in N2$).

Definition

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 2/2

Example: The Grammar of the Last Example in NF1

- $N1 = \{Book, Author, Publisher, Pcdata\},\$
- $N2 = \{BOOK, AUTHOR, PUBLISHER, PCDATA\},\$
- $T = \{book, author, publisher, pcdata\},\$
- $P1 = \{Book \rightarrow book BOOK, Author \rightarrow author AUTHOR, Publisher \rightarrow publisher PUBLISHER, Pcdata \rightarrow pcdata PCDATA\},$
- $\begin{array}{ll} P2 &=& \{BOOK \rightarrow (Author^+, Publisher), AUTHOR \rightarrow Pcdata, \\ &PUBLISHER \rightarrow \varepsilon, PCDATA \rightarrow \varepsilon \}, \end{array}$
- $S = \{Book\}.$

contentModel(Book) = (Author⁺, Publisher)

From now on upper- and lower-casing will be used like in this example to distinguish between symbols in N1, N2 and T.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Normal Form 1 (NF1) 2/2

Example: The Grammar of the Last Example in NF1

- $N1 = \{Book, Author, Publisher, Pcdata\},\$
- $N2 = \{BOOK, AUTHOR, PUBLISHER, PCDATA\},\$
- $T = \{book, author, publisher, pcdata\},\$
- $P1 = \{Book \rightarrow book BOOK, Author \rightarrow author AUTHOR, Publisher \rightarrow publisher PUBLISHER, Pcdata \rightarrow pcdata PCDATA\},$
- $\begin{array}{ll} P2 &=& \{BOOK \rightarrow (Author^+, Publisher), AUTHOR \rightarrow Pcdata, \\ &PUBLISHER \rightarrow \varepsilon, PCDATA \rightarrow \varepsilon \}, \end{array}$
- $S = \{Book\}.$

contentModel(Book) = (Author⁺, Publisher)

From now on upper- and lower-casing will be used like in this example to distinguish between symbols in N1, N2 and T.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Overview

XML Languages and Grammars
 Introduction and Basics

Characterization

2 One-Unambiguous Regular Languages

- Introduction and Basics
- Recognition
- Closure

3 Analysis of XML Schema Languages

- Introduction and Basics
- Language Classes
- Evaluating XML Schema Languages

Introduction and Basics Language Classes Evaluating XML Schema Languages

Local Tree Grammars

Definition: Tree-Locality Constraint

 $\forall a \in T$ there is no more than one rule of the form $A \rightarrow aX$ in P1.

Definition: Local Tree Grammar (LTG)

A regular tree grammar that satisfies the tree-locality constraint.

Example

- $N1 = \{Out, In, Pcd\}$
- $\overline{N}_{2} = \{OOT, IN, PCL\}$
- $\Gamma = \{out, in, pcd\}$
- $\mathsf{P1}_{\mathsf{a}} \;\;=\;\; \{\mathit{Out}
 ightarrow \mathit{out} \; \mathit{OUT}, \mathit{In}
 ightarrow \mathit{in} \; \mathit{IN}, \mathit{Pcd}
 ightarrow \mathit{pcd} \; \mathit{PCD}\}$
- $\mathsf{P1}_b \;\;=\;\; \{\mathit{Out}
 ightarrow \mathit{out} \; \mathit{OUT}, \mathit{In}
 ightarrow \mathit{out} \; \mathit{IN}, \mathit{Pcd}
 ightarrow \mathit{pcd} \; \mathit{PCD}\}$
- $P2 = \{OUT \rightarrow In, IN \rightarrow Pcd, PCD \rightarrow \varepsilon\}$

 $(N1, N2, T, P1_a, P2)$ is an LTG, $(N1, N2, T, P1_b, P2)$ is not.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Local Tree Grammars

Definition: Tree-Locality Constraint

 $\forall a \in T$ there is no more than one rule of the form $A \rightarrow aX$ in P1.

Definition: Local Tree Grammar (LTG)

A regular tree grammar that satisfies the tree-locality constraint.

Example

- $N1 = \{Out, In, Pcd\}$ $N2 = \{OUT, IN, PCD\}$
- $T = {out, in, pcd}$
- $P1_{a} \hspace{0.1 in} = \hspace{0.1 in} \{ \textit{Out} \rightarrow \textit{out} \hspace{0.1 in} \textit{OUT}, \textit{In} \rightarrow \textit{in} \hspace{0.1 in} \textit{IN}, \textit{Pcd} \rightarrow \textit{pcd} \hspace{0.1 in} \textit{PCD} \}$
- $P1_b = \{Out \rightarrow out \ OUT, In \rightarrow out \ IN, Pcd \rightarrow pcd \ PCD\}$
- $P2 \quad = \quad \{ \textit{OUT} \rightarrow \textit{In}, \textit{IN} \rightarrow \textit{Pcd}, \textit{PCD} \rightarrow \varepsilon \}$

 $(N1, N2, T, P1_a, P2)$ is an LTG, $(N1, N2, T, P1_b, P2)$ is not.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Single-Type Constraint Languages 1/2

Definition

Two different non-terminals A and B are called competing with each other if

- one production rule has A in the left-hand side,
- another production rule has B in the left-hand side, and
- these two production rules share the same terminal in the right-hand side.

Definition: Single-Type Constraint Grammar

- For each production rule, non-terminals in its content model do not compete with each other,
- start symbols do not compete with each other.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Single-Type Constraint Languages 1/2

Definition

Two different non-terminals A and B are called competing with each other if

- one production rule has A in the left-hand side,
- another production rule has B in the left-hand side, and
- these two production rules share the same terminal in the right-hand side.

Definition: Single-Type Constraint Grammar

- For each production rule, non-terminals in its content model do not compete with each other,
- start symbols do not compete with each other.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Single-Type Constraint Languages 2/2

Definition

A tree language is a single-type constraint language if it is generated by a single-type constraint grammar.

Example

•
$$P_1 = \{A \rightarrow B, A \rightarrow C, B \rightarrow a, C \rightarrow b\}$$
 satisfies the s.-t. c.,

•
$$P_2 = \{A \rightarrow B, A \rightarrow C, B \rightarrow a, C \rightarrow a\}$$
 doesn't.

Single-type constraint languages and local tree languages are ...

- ... closed under intersection.
- ... not closed under union.
- ... not closed under difference.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Single-Type Constraint Languages 2/2

Definition

A tree language is a single-type constraint language if it is generated by a single-type constraint grammar.

Example

•
$$P_1 = \{A \rightarrow B, A \rightarrow C, B \rightarrow a, C \rightarrow b\}$$
 satisfies the s.-t. c.,

•
$$P_2 = \{A \rightarrow B, A \rightarrow C, B \rightarrow a, C \rightarrow a\}$$
 doesn't.

Single-type constraint languages and local tree languages are ...

- ... closed under intersection.
- ... not closed under union.
- ... not closed under difference.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Local Tree Languages \subset Single Type Constraint Languages

Theorem

Local tree languages form a proper subclass of single-type constraint languages.

Proof:

⇒: A local tree language satisfies the single-type constraint by definition.

⇐=:

- Consider a regular tree grammar with A, B ∈ N1 ∧ A ≠ B ∧ root(A) = root(B).
- This grammar can satisfy the single-type constraint.
- This grammar is not a local tree grammar.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Local Tree Languages \subset Single Type Constraint Languages

Theorem

Local tree languages form a proper subclass of single-type constraint languages.

Proof:

 $\Longrightarrow:$ A local tree language satisfies the single-type constraint by definition.

\Leftarrow

- Consider a regular tree grammar with A, B ∈ N1 ∧ A ≠ B ∧ root(A) = root(B).
- This grammar can satisfy the single-type constraint.
- This grammar is not a local tree grammar.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Local Tree Languages \subset Single Type Constraint Languages

Theorem

Local tree languages form a proper subclass of single-type constraint languages.

Proof:

 \implies : A local tree language satisfies the single-type constraint by definition.

⇐=:

- Consider a regular tree grammar with A, B ∈ N1 ∧ A ≠ B ∧ root(A) = root(B).
- This grammar can satisfy the single-type constraint.
- This grammar is not a local tree grammar.

XML Languages and Grammars Introduction and Basics One-Unambiguous Regular Languages Language Classes Analysis of XML Schema Languages Evaluating XML Schema Languages

Overview

XML Languages and Grammars
 Introduction and Basics

Characterization

One-Unambiguous Regular Languages

- Introduction and Basics
- Recognition
- Closure

3 Analysis of XML Schema Languages

- Introduction and Basics
- Language Classes

• Evaluating XML Schema Languages

Introduction and Basics Language Classes Evaluating XML Schema Languages

DTD and DSD

DTD

- TDLL(1),
- Iocal tree grammar.

DSD

- No constraints on the production rules,
- theoretically any regular tree grammar can be expressed in DSD,
- parsing algorithm uses greedy technique with one vertical and horizontal lookahead,
- acceptance of all and only TDLL(1) languages is suspected.

Introduction and Basics Language Classes Evaluating XML Schema Languages

DTD and DSD

DTD

- TDLL(1),
- Iocal tree grammar.

DSD

- No constraints on the production rules,
- theoretically any regular tree grammar can be expressed in DSD,
- parsing algorithm uses greedy technique with one vertical and horizontal lookahead,
- acceptance of all and only TDLL(1) languages is suspected.

Introduction and Basics Language Classes Evaluating XML Schema Languages

XML Schema and RELAX

XML Schema

- TDLL(1) with single-type constraint,
- group definitions allowed to contain other group definitions without restriction ⇒ context-free content models possible (specification mistake?).

RELAX

• Any regular tree grammar.

Introduction and Basics Language Classes Evaluating XML Schema Languages

XML Schema and RELAX

XML Schema

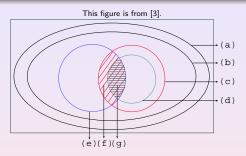
- TDLL(1) with single-type constraint,
- group definitions allowed to contain other group definitions without restriction ⇒ context-free content models possible (specification mistake?).

RELAX

• Any regular tree grammar.

Introduction and Basics Language Classes Evaluating XML Schema Languages

Expression Power



- regular tree grammars (RELAX, XDuce) (a)
- (b) TD(1) grammars
- (c) single-type constraint grammars
- (d) local tree grammars
- (e) TDLL(1) grammars
- (f) TDLL(1) w/ single-type constraint (XML Schema, DSD?)
- (g) TDLL(1) w/ tree-locality constraint (DTD)

References 1/2

- Jean Berstel, Luc Boasson. Formal Properties of XML Grammars and Languages. Acta Informatica, 38:649–671, 2002.
- Anne Brüggemann-Klein, Derick Wood. One-Unambiguous Regular Languages. Information and Computation, 140:229–253, 1998.
- [3] Dongwon Lee, Murali Mani, Makoto Murata. Reasoning about XML Schema Languages using Formal Language Theory. Technical Report, IBM Almaden Research Center, 2000. Log #95071.

References 2/2

- Thomas Schwentick. Formal Methods for XML: Algorithms & Complexity. Internet: <http://lrb.cs.uni-dortmund.de/~tick/Talks/ edbtp.pdf>, 2004 (cited 2006-01-26).
- Anders Møller, Michael I. Schwartzbach. The XML Revolution: Technologies for the future Web. Internet: <http://www.brics.dk/~amoeller/XML/>, 2003 (cited 2006-01-26).
- Dongwon Lee, Murali Mani, Makoto Murata. Taxonomy of XML Schema Languages Using Formal Language Theory.
 Proceedings of the 2001 Conference on Extreme Markup Languages, 2001.